找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Manifolds; Loring W. Tu Textbook 2008Latest edition Springer-Verlag New York 2008 Algebraic topology.De Rham cohomology

[復(fù)制鏈接]
樓主: 爆發(fā)
21#
發(fā)表于 2025-3-25 03:56:24 | 只看該作者
ManifoldsIntuitively, a manifold is a generalization of curves and surfaces to arbitrary dimension. While there are many different kinds of manifolds—topological manifolds, .-manifolds, analytic manifolds, and complex manifolds, in this book we are concerned mainly with smooth manifolds.
22#
發(fā)表于 2025-3-25 11:12:43 | 只看該作者
Smooth Maps on a ManifoldUsing coordinate charts we can transfer the notion of differentiability from R. to a smooth manifold ..
23#
發(fā)表于 2025-3-25 14:50:58 | 只看該作者
24#
發(fā)表于 2025-3-25 16:13:57 | 只看該作者
25#
發(fā)表于 2025-3-26 00:02:46 | 只看該作者
Lie GroupsCertain manifolds such as the circle have in addition to their . structure also a group structure; moreover, the group operations are .∞. Manifolds such as these are called Lie groups. This chapter is a compendium of a few important examples of Lie groups, the ..
26#
發(fā)表于 2025-3-26 00:26:26 | 只看該作者
27#
發(fā)表于 2025-3-26 07:26:54 | 只看該作者
Textbook 2008Latest edition are provided to many of the exercises and problems...This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, Introduction to Manifolds is also an excellent found
28#
發(fā)表于 2025-3-26 11:41:36 | 只看該作者
Bump Functions and Partitions of Unity the behavior of . manifolds so different from real-analytic or complex manifolds. In this chapter we construct . bump functions on any manifold and prove the existence of a .∞ partition of unity on a compact manifold. The proof of the existence of a . partition of unity on a general manifold is mor
29#
發(fā)表于 2025-3-26 14:32:01 | 只看該作者
Rahul De,Aaromal DCruz held in 2009.The papers presented at this symposium comprisThe seventh symposium on “Nutritional Aspects of Osteoporosis” continues to be the primary forum for scientists to focus on the impact of nutrition on bone health in general. Since 1991, the year of the frst symposium, research in this feld
30#
發(fā)表于 2025-3-26 18:05:37 | 只看該作者
Céline Goujon,Blanche Dalloz-Dubrujeaud,Nathalie Thomasrlebt hat, erkennt man, fern von modischer Technikfeindlichkeit und romantischer Verkl?rung früherer Zust?nde, die zunehmende Zahl von tiefgreifenden ?rztlichen Konfliktsituationen. “ Die hier von dem Chirurgen Wachsmuth.) thematisierte grunds?tzliche Lage der modernen Medizin in einer durch Naturwi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 13:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
溧水县| 德清县| 清水河县| 巴塘县| 西安市| 绍兴县| 本溪市| 渭南市| 盐边县| 蓬安县| 惠安县| 弥渡县| 邢台市| 海晏县| 张家口市| 探索| 乌审旗| 桐梓县| 沧源| 独山县| 长寿区| 阿克苏市| 扬中市| 綦江县| 裕民县| 巫溪县| 湛江市| 元谋县| 昌都县| 游戏| 读书| 武山县| 汉中市| 定陶县| 无为县| 乌什县| 哈尔滨市| 施甸县| 韶山市| 屏东市| 新田县|