找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Almost Periodicity, Chaos, and Asymptotic Equivalence; Marat Akhmet Book 2020 Springer Nature Switzerland AG 2020 Chaos.Li-Yorke Chaos.Alm

[復(fù)制鏈接]
樓主: 并排一起
41#
發(fā)表于 2025-3-28 16:07:39 | 只看該作者
42#
發(fā)表于 2025-3-28 21:54:50 | 只看該作者
2195-9994 asspecialists in electronics, computer sciences, robotics, neural networks, artificial networks, and biology..Distinctively combines results and methods of the theory of differential equations with thorough inv978-3-030-20572-0Series ISSN 2195-9994 Series E-ISSN 2196-0003
43#
發(fā)表于 2025-3-29 00:34:45 | 只看該作者
44#
發(fā)表于 2025-3-29 06:24:17 | 只看該作者
45#
發(fā)表于 2025-3-29 09:31:38 | 只看該作者
Developments in Applied Spectroscopyond section we are concentrated on the Bochner definition of discontinuous almost periodic function. This was done in our papers for the first time. The Bochner’s definition is convenient for topological dynamics. Initially, the dynamics was applied either to autonomous equations or to non-autonomou
46#
發(fā)表于 2025-3-29 11:58:07 | 只看該作者
47#
發(fā)表于 2025-3-29 17:39:01 | 只看該作者
Book 2020ations where dynamics are observable and applied, the book is ideal for engineers as well asspecialists in electronics, computer sciences, robotics, neural networks, artificial networks, and biology..Distinctively combines results and methods of the theory of differential equations with thorough inv
48#
發(fā)表于 2025-3-29 21:03:49 | 只看該作者
Introduction,r development of many discontinuous dynamics is emphasized. The second part provides short and sufficiently complete description of main results on deterministic chaos. Then, the mechanism of replication of chaos is introduced with stressing that our proposals are a powerful instrument for shaping n
49#
發(fā)表于 2025-3-30 02:27:11 | 只看該作者
50#
發(fā)表于 2025-3-30 07:17:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 22:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康马县| 宝山区| 龙里县| 瑞昌市| 鄂托克旗| 关岭| 兰西县| 和硕县| 新竹市| 壤塘县| 达孜县| 襄垣县| 鸡泽县| 阳春市| 乳山市| 肃宁县| 宕昌县| 益阳市| 建湖县| 全州县| 鞍山市| 富裕县| 长寿区| 汝阳县| 抚松县| 石渠县| 大港区| 望城县| 德钦县| 锦州市| 凭祥市| 察隅县| 河北区| 香港 | 莫力| 万源市| 黄大仙区| 安新县| 通河县| 栖霞市| 资阳市|