找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Almost Periodicity, Chaos, and Asymptotic Equivalence; Marat Akhmet Book 2020 Springer Nature Switzerland AG 2020 Chaos.Li-Yorke Chaos.Alm

[復(fù)制鏈接]
樓主: 并排一起
31#
發(fā)表于 2025-3-26 23:00:31 | 只看該作者
Exponentially Dichotomous Linear Systems of Differential Equations with Piecewise Constant Argumenteen made in such a way that further construction of the theory of differential equations will follow the structure of that for ordinary differential equations. All the results are illustrated with examples.
32#
發(fā)表于 2025-3-27 03:58:22 | 只看該作者
33#
發(fā)表于 2025-3-27 06:35:02 | 只看該作者
34#
發(fā)表于 2025-3-27 12:13:05 | 只看該作者
Developments in Applied Spectroscopyrke and Pyragas control methods are utilized to stabilize almost periodic motions. A Duffing oscillator is considered to show the effectiveness of our technique, and simulations that support the theoretical results are depicted.
35#
發(fā)表于 2025-3-27 16:01:31 | 只看該作者
Homoclinic Chaos and Almost Periodicity,rke and Pyragas control methods are utilized to stabilize almost periodic motions. A Duffing oscillator is considered to show the effectiveness of our technique, and simulations that support the theoretical results are depicted.
36#
發(fā)表于 2025-3-27 19:12:52 | 只看該作者
37#
發(fā)表于 2025-3-27 23:31:07 | 只看該作者
Discontinuous Almost Periodic Solutions,r systems with impulses, such that they are sufficient to admit discontinuous almost periodic solutions, which are asymptotically stable. Interesting specific cases are under consideration, which can be useful for next developments. The most informative historical aspects of the theory of discontinuous almost periodic solutions are provided.
38#
發(fā)表于 2025-3-28 04:06:00 | 只看該作者
Asymptotic Equivalence of Hybrid Systems,tial equations. It is easy to see that the results are generalizations of Chap. 12 such that if one removes the impulsive parts in equations of this chapter then the results of the last chapter will be obtained.
39#
發(fā)表于 2025-3-28 08:25:43 | 只看該作者
40#
發(fā)表于 2025-3-28 13:19:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 22:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大石桥市| 佳木斯市| 乡城县| 巨野县| 托克托县| 屯留县| 阜城县| 遵义市| 三原县| 云梦县| 固阳县| 贵南县| 兰溪市| 井陉县| 双流县| 睢宁县| 墨竹工卡县| 繁峙县| 巴南区| 科技| 淳安县| 宜兴市| 蓬溪县| 晋城| 五常市| 江北区| 融水| 宜兴市| 平湖市| 云龙县| 文安县| 抚远县| 海丰县| 饶阳县| 昌江| 横山县| 南皮县| 泉州市| 兴海县| 固阳县| 珠海市|