找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Almost Periodicity, Chaos, and Asymptotic Equivalence; Marat Akhmet Book 2020 Springer Nature Switzerland AG 2020 Chaos.Li-Yorke Chaos.Alm

[復(fù)制鏈接]
查看: 8578|回復(fù): 58
樓主
發(fā)表于 2025-3-21 16:48:05 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Almost Periodicity, Chaos, and Asymptotic Equivalence
影響因子2023Marat Akhmet
視頻videohttp://file.papertrans.cn/154/153893/153893.mp4
發(fā)行地址Distinctively combines results and methods of the theory of differential equations with thorough investigation of chaotic dynamics with almost periodic ingredients.Provides all necessary mathematical
學(xué)科分類Nonlinear Systems and Complexity
圖書封面Titlebook: Almost Periodicity, Chaos, and Asymptotic Equivalence;  Marat Akhmet Book 2020 Springer Nature Switzerland AG 2020 Chaos.Li-Yorke Chaos.Alm
影響因子.The central subject of this book is Almost Periodic Oscillations, the most common oscillations in applications and the most intricate for mathematical analysis.? Prof. Akhmet‘s lucid and rigorous examination proves these oscillations are a "regular" component of chaotic attractors. The book focuses on almost periodic functions, first of all, as Stable (asymptotically) solutions of differential equations of different types, presumably discontinuous; and, secondly, as non-isolated oscillations in chaotic sets. Finally, the author proves the existence of Almost Periodic Oscillations (asymptotic and bi-asymptotic) by asymptotic equivalence between systems. The book brings readers‘ attention to contemporary methods for considering oscillations as well as to methods with strong potential for study of chaos in the future. Providing three powerful instruments for mathematical research of oscillations where dynamics are observable and applied, the book is ideal for engineers as well asspecialists in electronics, computer sciences, robotics, neural networks, artificial networks, and biology..Distinctively combines results and methods of the theory of differential equations with thorough inv
Pindex Book 2020
The information of publication is updating

書目名稱Almost Periodicity, Chaos, and Asymptotic Equivalence影響因子(影響力)




書目名稱Almost Periodicity, Chaos, and Asymptotic Equivalence影響因子(影響力)學(xué)科排名




書目名稱Almost Periodicity, Chaos, and Asymptotic Equivalence網(wǎng)絡(luò)公開度




書目名稱Almost Periodicity, Chaos, and Asymptotic Equivalence網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Almost Periodicity, Chaos, and Asymptotic Equivalence被引頻次




書目名稱Almost Periodicity, Chaos, and Asymptotic Equivalence被引頻次學(xué)科排名




書目名稱Almost Periodicity, Chaos, and Asymptotic Equivalence年度引用




書目名稱Almost Periodicity, Chaos, and Asymptotic Equivalence年度引用學(xué)科排名




書目名稱Almost Periodicity, Chaos, and Asymptotic Equivalence讀者反饋




書目名稱Almost Periodicity, Chaos, and Asymptotic Equivalence讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:46:00 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:18:17 | 只看該作者
地板
發(fā)表于 2025-3-22 07:14:40 | 只看該作者
5#
發(fā)表于 2025-3-22 11:37:09 | 只看該作者
Spectroscopic Techniques in X-Ray AstronomyIt is clear that the asymptotic representation of solutions and asymptotic equivalence of systems of differential equations are close subjects in the qualitative analysis of the systems. Formally thinking one must replace the function for the presentation with a solution of the equivalent system. In our present research we issue from the scheme.
6#
發(fā)表于 2025-3-22 14:43:35 | 只看該作者
7#
發(fā)表于 2025-3-22 17:13:50 | 只看該作者
8#
發(fā)表于 2025-3-22 22:22:10 | 只看該作者
9#
發(fā)表于 2025-3-23 04:54:25 | 只看該作者
Springer Nature Switzerland AG 2020
10#
發(fā)表于 2025-3-23 07:45:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 22:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天峨县| 滦南县| 宣恩县| 炎陵县| 上杭县| 镇坪县| 淮安市| 中西区| 富锦市| 西吉县| 蒙山县| 南京市| 富民县| 鹤岗市| 永德县| 于都县| 江华| 兴安盟| 台中县| 广州市| 东宁县| 牡丹江市| 湄潭县| 古交市| 鹤峰县| 宣城市| 合阳县| 苍南县| 衡阳市| 乌什县| 平原县| 镇原县| 左权县| 余干县| 开平市| 大邑县| 甘谷县| 循化| 大埔区| 湟中县| 赫章县|