找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances on Theory and Practice of Robots and Manipulators; Proceedings of Roman Marco Ceccarelli,Victor A. Glazunov Conference proceedings

[復(fù)制鏈接]
樓主: invigorating
11#
發(fā)表于 2025-3-23 12:22:13 | 只看該作者
12#
發(fā)表于 2025-3-23 14:50:54 | 只看該作者
Phan Hien Vu,Tan-Long Le,Cuong Pham-Quocreedom (DOFs) have been developed. These are mostly serial mechanisms composed of three 1-DOF RCM mechanisms and a 1-DOF translation stage. In the vast majority, the translation stage is implemented proximal to the end-effector resulting into a heavy and voluminous end-effector. To provide easier ac
13#
發(fā)表于 2025-3-23 20:03:41 | 只看該作者
14#
發(fā)表于 2025-3-24 01:33:02 | 只看該作者
Multi-Criteria Decision Systems,ime required for simulating the elastodynamic behavior of robots, it is necessary to minimize the number of operators in the symbolic model expression. Some algorithms have been proposed for the rigid case or for parallel robots with lumped springs. In this paper, we extend the previous works to par
15#
發(fā)表于 2025-3-24 04:43:12 | 只看該作者
16#
發(fā)表于 2025-3-24 09:22:44 | 只看該作者
17#
發(fā)表于 2025-3-24 10:53:58 | 只看該作者
18#
發(fā)表于 2025-3-24 18:12:20 | 只看該作者
19#
發(fā)表于 2025-3-24 22:39:08 | 只看該作者
Attasit Patanasiri,Donyaprueth KrairitIn this paper we analyze singularities of the 3-DOF translational parallel mechanism with three kinematic chains, each consisting of five revolute joints. Both Jacobian and Screw theory methods are used to determine singular points of different types. Constraint singularity is also studied.
20#
發(fā)表于 2025-3-25 01:16:41 | 只看該作者
Context-based Routing Protocol Development,This paper deals with the kinematical and dynamical properties of parallel spherical manipulators with three degrees of freedom. Accelerations, dynamics, control and accuracy are considered. Algorithm of control is based on the inverse problem of dynamics and allows minimizing deviations of coordinates, velocities and accelerations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 09:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
施秉县| 水城县| 类乌齐县| 鄂托克旗| 乌鲁木齐县| 武鸣县| 含山县| 华坪县| 临夏市| 方城县| 长武县| 响水县| 会宁县| 林州市| 太仆寺旗| 平原县| 曲靖市| 石楼县| 临颍县| 罗定市| 广东省| 峡江县| 麻城市| 顺昌县| 泸州市| 宣汉县| 贡嘎县| 大关县| 锦屏县| 平顶山市| 万山特区| 镇原县| 宁武县| 左云县| 葵青区| 香港| 鹤庆县| 平南县| 贡觉县| 绥德县| 云南省|