找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Ludic Journey into Geometric Topology; Ton Marar Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to S

[復制鏈接]
查看: 47386|回復: 37
樓主
發(fā)表于 2025-3-21 18:49:29 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱A Ludic Journey into Geometric Topology
影響因子2023Ton Marar
視頻videohttp://file.papertrans.cn/142/141367/141367.mp4
發(fā)行地址Explores real-world elements to introduce non-specialists to geometric topology.Offers a rich learning journey that is both dense and enjoyable.Engages everyone who feels intrigued by the power of mat
圖書封面Titlebook: A Ludic Journey into Geometric Topology;  Ton Marar Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to S
影響因子This book draws on elements from everyday life, architecture, and the arts to provide the reader with elementary notions of geometric topology. Pac Man, subway maps, and architectural blueprints are the starting point for exploring how knowledge about geometry and, more specifically, topology has been consolidated over time, offering a learning journey that is both dense and enjoyable..?.The text begins with a discussion of mathematical models, moving on to Platonic and Keplerian theories that explain the Cosmos. Geometry from Felix Klein‘s point of view is then presented, paving the way to an introduction to topology.? The final chapters present the concepts of closed, orientable, and non-orientable surfaces, as well as hypersurface models. Adopting a style that is both rigorous and accessible, this book will appeal to a broad audience, from curious students and researchers in various areas of knowledge to everyone who feels instigated by the power of mathematics in representing our world - and beyond.?.
Pindex Book 2022
The information of publication is updating

書目名稱A Ludic Journey into Geometric Topology影響因子(影響力)




書目名稱A Ludic Journey into Geometric Topology影響因子(影響力)學科排名




書目名稱A Ludic Journey into Geometric Topology網(wǎng)絡(luò)公開度




書目名稱A Ludic Journey into Geometric Topology網(wǎng)絡(luò)公開度學科排名




書目名稱A Ludic Journey into Geometric Topology被引頻次




書目名稱A Ludic Journey into Geometric Topology被引頻次學科排名




書目名稱A Ludic Journey into Geometric Topology年度引用




書目名稱A Ludic Journey into Geometric Topology年度引用學科排名




書目名稱A Ludic Journey into Geometric Topology讀者反饋




書目名稱A Ludic Journey into Geometric Topology讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:45:24 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:51:34 | 只看該作者
地板
發(fā)表于 2025-3-22 05:21:09 | 只看該作者
https://doi.org/10.1007/978-3-319-11866-6f non-Euclidean geometries. In 1872, Felix Klein presented a way to define geometries without axioms, organizing the space in congruence classes, allowing a multitude of geometries defined in a given space. Klein’s program inaugurated a kind of postmodernity in geometry.
5#
發(fā)表于 2025-3-22 10:05:21 | 只看該作者
6#
發(fā)表于 2025-3-22 16:48:32 | 只看該作者
7#
發(fā)表于 2025-3-22 20:11:29 | 只看該作者
Near Field Communication Technology for AALmensional objects that we can see or touch. For three-dimensional objects finite in size and without boundary, called hypersurfaces here, we have no physical models, therefore they are much harder to represent. However, by analogy with the modeling of lower-dimensional objects, we can expand our understanding of some hypersurfaces.
8#
發(fā)表于 2025-3-22 22:04:46 | 只看該作者
9#
發(fā)表于 2025-3-23 02:34:14 | 只看該作者
10#
發(fā)表于 2025-3-23 09:11:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
云林县| 务川| 上思县| 晋中市| 邵东县| 若尔盖县| 衢州市| 临澧县| 杭州市| 洪雅县| 秦安县| 山西省| 德兴市| 江孜县| 革吉县| 永新县| 色达县| 修文县| 滨州市| 安图县| 鸡西市| 丰原市| 略阳县| 红原县| 惠安县| 怀远县| 东宁县| 施秉县| 平安县| 偃师市| 顺平县| 麻栗坡县| 河源市| 迁安市| 岳池县| 宜兰市| 浑源县| 龙南县| 伊川县| 孟津县| 商河县|