找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Ludic Journey into Geometric Topology; Ton Marar Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to S

[復(fù)制鏈接]
樓主: Pessimistic
11#
發(fā)表于 2025-3-23 11:11:38 | 只看該作者
http://image.papertrans.cn/a/image/141367.jpg
12#
發(fā)表于 2025-3-23 15:56:06 | 只看該作者
https://doi.org/10.1007/978-3-319-11866-6f non-Euclidean geometries. In 1872, Felix Klein presented a way to define geometries without axioms, organizing the space in congruence classes, allowing a multitude of geometries defined in a given space. Klein’s program inaugurated a kind of postmodernity in geometry.
13#
發(fā)表于 2025-3-23 19:35:01 | 只看該作者
https://doi.org/10.1007/978-3-319-11866-6study of Einstein’s general relativity and, by the end of the century, material science Nobel prize winners benefited from the topological classification of surfaces. Here, using surface planar models and word representation, we show how to identify some surfaces.
14#
發(fā)表于 2025-3-23 23:41:12 | 只看該作者
https://doi.org/10.1007/978-3-319-11866-6e. Here we describe a four-dimensional place; that is, a portion of a four-dimensional space enclosed by a hypercube. Although we cannot physically enter a four-dimensional place, we can imagine it. There is no magic portal from one world to another of higher dimension.
15#
發(fā)表于 2025-3-24 05:10:14 | 只看該作者
16#
發(fā)表于 2025-3-24 10:04:37 | 只看該作者
17#
發(fā)表于 2025-3-24 13:20:38 | 只看該作者
Advanced Technologies and Societal ChangeFrom Plato to Kepler, some famous philosophers, scientists and alchemists using a remarkable blend of mathematics and faith try to explain the creation of the universe. They make geometric descriptions of allegedly fundamental ingredients of a harmonious cosmos, sometimes scientifically, others poetically.
18#
發(fā)表于 2025-3-24 16:14:46 | 只看該作者
Andreas Fink,Johannes Lange,Helmut BeikirchClosed non-orientable surfaces are connected sum of projective planes. Here we construct the classical models of the projective plane in three-dimensional space; namely, the sphere with cross-cap, the Steiner Roman surface and the Boy surface.
19#
發(fā)表于 2025-3-24 19:31:45 | 只看該作者
20#
發(fā)表于 2025-3-25 01:33:46 | 只看該作者
6樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
孝义市| 泰顺县| 新邵县| 洪雅县| 广德县| 元氏县| 化州市| 蒙城县| 河曲县| 商南县| 临西县| 孝昌县| 广昌县| 和龙市| 和平区| 来凤县| 图木舒克市| 惠安县| 石嘴山市| 桃园县| 麦盖提县| 塔城市| 城固县| 阿勒泰市| 彭州市| 叙永县| 达拉特旗| 偏关县| 登封市| 铁岭市| 镇沅| 德江县| 蓝田县| 河曲县| 金川县| 平武县| 太原市| 裕民县| 楚雄市| 建阳市| 新和县|