找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Ludic Journey into Geometric Topology; Ton Marar Book 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to S

[復(fù)制鏈接]
樓主: Pessimistic
11#
發(fā)表于 2025-3-23 11:11:38 | 只看該作者
http://image.papertrans.cn/a/image/141367.jpg
12#
發(fā)表于 2025-3-23 15:56:06 | 只看該作者
https://doi.org/10.1007/978-3-319-11866-6f non-Euclidean geometries. In 1872, Felix Klein presented a way to define geometries without axioms, organizing the space in congruence classes, allowing a multitude of geometries defined in a given space. Klein’s program inaugurated a kind of postmodernity in geometry.
13#
發(fā)表于 2025-3-23 19:35:01 | 只看該作者
https://doi.org/10.1007/978-3-319-11866-6study of Einstein’s general relativity and, by the end of the century, material science Nobel prize winners benefited from the topological classification of surfaces. Here, using surface planar models and word representation, we show how to identify some surfaces.
14#
發(fā)表于 2025-3-23 23:41:12 | 只看該作者
https://doi.org/10.1007/978-3-319-11866-6e. Here we describe a four-dimensional place; that is, a portion of a four-dimensional space enclosed by a hypercube. Although we cannot physically enter a four-dimensional place, we can imagine it. There is no magic portal from one world to another of higher dimension.
15#
發(fā)表于 2025-3-24 05:10:14 | 只看該作者
16#
發(fā)表于 2025-3-24 10:04:37 | 只看該作者
17#
發(fā)表于 2025-3-24 13:20:38 | 只看該作者
Advanced Technologies and Societal ChangeFrom Plato to Kepler, some famous philosophers, scientists and alchemists using a remarkable blend of mathematics and faith try to explain the creation of the universe. They make geometric descriptions of allegedly fundamental ingredients of a harmonious cosmos, sometimes scientifically, others poetically.
18#
發(fā)表于 2025-3-24 16:14:46 | 只看該作者
Andreas Fink,Johannes Lange,Helmut BeikirchClosed non-orientable surfaces are connected sum of projective planes. Here we construct the classical models of the projective plane in three-dimensional space; namely, the sphere with cross-cap, the Steiner Roman surface and the Boy surface.
19#
發(fā)表于 2025-3-24 19:31:45 | 只看該作者
20#
發(fā)表于 2025-3-25 01:33:46 | 只看該作者
6樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 17:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
含山县| 兰考县| 油尖旺区| 宜川县| 胶州市| 红桥区| 遂溪县| 加查县| 莫力| 邳州市| 资阳市| 绿春县| 荆州市| 邵阳县| 台安县| 通城县| 唐河县| 肥西县| 中阳县| 太保市| 石渠县| 光泽县| 遵化市| 民丰县| 双桥区| 崇礼县| 盈江县| 昔阳县| 和政县| 广饶县| 伊金霍洛旗| 肥西县| 勐海县| 博客| 九寨沟县| 长汀县| 南宁市| 忻城县| 兰坪| 常宁市| 皮山县|