找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Universal Time-Series Forecasting with Mixture Predictors; Daniil Ryabko Book 2020 Springer Nature Switzerland AG 2020 Time Series.Forecas

[復(fù)制鏈接]
查看: 24361|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:08:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Universal Time-Series Forecasting with Mixture Predictors
編輯Daniil Ryabko
視頻videohttp://file.papertrans.cn/943/942237/942237.mp4
概述Considers problem of sequential probability forecasting in the most general setting.Results presented concern the foundations of problems in areas such as machine learning, information theory and data
叢書(shū)名稱SpringerBriefs in Computer Science
圖書(shū)封面Titlebook: Universal Time-Series Forecasting with Mixture Predictors;  Daniil Ryabko Book 2020 Springer Nature Switzerland AG 2020 Time Series.Forecas
描述The author considers the problem of sequential probability forecasting in the most general setting, where the observed data may exhibit an arbitrary form of stochastic dependence. All the results presented are theoretical, but they concern the foundations of some problems in such applied areas as machine learning, information theory and data compression.
出版日期Book 2020
關(guān)鍵詞Time Series; Forecasting; Bayesian Predictors; Machine Learning Theory; Statistics; Information Theory; No
版次1
doihttps://doi.org/10.1007/978-3-030-54304-4
isbn_softcover978-3-030-54303-7
isbn_ebook978-3-030-54304-4Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書(shū)目名稱Universal Time-Series Forecasting with Mixture Predictors影響因子(影響力)




書(shū)目名稱Universal Time-Series Forecasting with Mixture Predictors影響因子(影響力)學(xué)科排名




書(shū)目名稱Universal Time-Series Forecasting with Mixture Predictors網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Universal Time-Series Forecasting with Mixture Predictors網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Universal Time-Series Forecasting with Mixture Predictors被引頻次




書(shū)目名稱Universal Time-Series Forecasting with Mixture Predictors被引頻次學(xué)科排名




書(shū)目名稱Universal Time-Series Forecasting with Mixture Predictors年度引用




書(shū)目名稱Universal Time-Series Forecasting with Mixture Predictors年度引用學(xué)科排名




書(shū)目名稱Universal Time-Series Forecasting with Mixture Predictors讀者反饋




書(shū)目名稱Universal Time-Series Forecasting with Mixture Predictors讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:16:07 | 只看該作者
Prediction in Total Variation: Characterizations,possible to provide complete characterizations of those sets of measures . for which predictors exist (realizable case). The non-realizable case turns out to be somewhat degenerate as the asymptotic error in total variation is either 0 or 1. These and related results are exhibited in this chapter.
板凳
發(fā)表于 2025-3-22 02:15:44 | 只看該作者
2191-5768 setting, where the observed data may exhibit an arbitrary form of stochastic dependence. All the results presented are theoretical, but they concern the foundations of some problems in such applied areas as machine learning, information theory and data compression.978-3-030-54303-7978-3-030-54304-4Series ISSN 2191-5768 Series E-ISSN 2191-5776
地板
發(fā)表于 2025-3-22 05:23:48 | 只看該作者
Introduction,., after which the process continues sequentially. We are interested in constructing predictors . whose conditional probabilities .(?|.., …, ..) converge (in some sense) to the “true” .-conditional probabilities .(?|.., …, ..), as the sequence of observations increases (.?→.). We would also like this convergence to be as fast as possible.
5#
發(fā)表于 2025-3-22 11:44:11 | 只看該作者
6#
發(fā)表于 2025-3-22 14:26:03 | 只看該作者
Conditions Under Which One Measure Is a Predictor for Another,orem .): absolute continuity is preserved under summation with arbitrary measure as follows directly from its definition (Definition .). For KL divergence, it is guaranteed by (.). Here we show that for other losses this is not necessarily the case.
7#
發(fā)表于 2025-3-22 19:31:18 | 只看該作者
8#
發(fā)表于 2025-3-22 23:18:06 | 只看該作者
Notation and Definitions, …, ... We consider stochastic processes (probability measures) on . where . is the sigma-field generated by the (countable) set . of cylinders, . where the words .. take all possible values in .. We use . for expectation with respect to a measure ..
9#
發(fā)表于 2025-3-23 03:06:45 | 只看該作者
10#
發(fā)表于 2025-3-23 08:25:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 02:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万载县| 陵川县| 普兰店市| 全南县| 麻栗坡县| 志丹县| 冕宁县| 新巴尔虎左旗| 沂源县| 岳西县| 交口县| 台中市| 沅陵县| 博野县| 化州市| 维西| 上饶县| 平罗县| 岱山县| 张家港市| 彰化市| 崇义县| 临沂市| 香格里拉县| 南江县| 秦皇岛市| 伊通| 巢湖市| 吉木萨尔县| 安溪县| 盐源县| 泸水县| 疏附县| 伊春市| 西昌市| 斗六市| 沿河| 正蓝旗| 余姚市| 扎兰屯市| 当阳市|