找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Universal Time-Series Forecasting with Mixture Predictors; Daniil Ryabko Book 2020 Springer Nature Switzerland AG 2020 Time Series.Forecas

[復(fù)制鏈接]
查看: 24362|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:08:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Universal Time-Series Forecasting with Mixture Predictors
編輯Daniil Ryabko
視頻videohttp://file.papertrans.cn/943/942237/942237.mp4
概述Considers problem of sequential probability forecasting in the most general setting.Results presented concern the foundations of problems in areas such as machine learning, information theory and data
叢書名稱SpringerBriefs in Computer Science
圖書封面Titlebook: Universal Time-Series Forecasting with Mixture Predictors;  Daniil Ryabko Book 2020 Springer Nature Switzerland AG 2020 Time Series.Forecas
描述The author considers the problem of sequential probability forecasting in the most general setting, where the observed data may exhibit an arbitrary form of stochastic dependence. All the results presented are theoretical, but they concern the foundations of some problems in such applied areas as machine learning, information theory and data compression.
出版日期Book 2020
關(guān)鍵詞Time Series; Forecasting; Bayesian Predictors; Machine Learning Theory; Statistics; Information Theory; No
版次1
doihttps://doi.org/10.1007/978-3-030-54304-4
isbn_softcover978-3-030-54303-7
isbn_ebook978-3-030-54304-4Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Universal Time-Series Forecasting with Mixture Predictors影響因子(影響力)




書目名稱Universal Time-Series Forecasting with Mixture Predictors影響因子(影響力)學(xué)科排名




書目名稱Universal Time-Series Forecasting with Mixture Predictors網(wǎng)絡(luò)公開度




書目名稱Universal Time-Series Forecasting with Mixture Predictors網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Universal Time-Series Forecasting with Mixture Predictors被引頻次




書目名稱Universal Time-Series Forecasting with Mixture Predictors被引頻次學(xué)科排名




書目名稱Universal Time-Series Forecasting with Mixture Predictors年度引用




書目名稱Universal Time-Series Forecasting with Mixture Predictors年度引用學(xué)科排名




書目名稱Universal Time-Series Forecasting with Mixture Predictors讀者反饋




書目名稱Universal Time-Series Forecasting with Mixture Predictors讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:16:07 | 只看該作者
Prediction in Total Variation: Characterizations,possible to provide complete characterizations of those sets of measures . for which predictors exist (realizable case). The non-realizable case turns out to be somewhat degenerate as the asymptotic error in total variation is either 0 or 1. These and related results are exhibited in this chapter.
板凳
發(fā)表于 2025-3-22 02:15:44 | 只看該作者
2191-5768 setting, where the observed data may exhibit an arbitrary form of stochastic dependence. All the results presented are theoretical, but they concern the foundations of some problems in such applied areas as machine learning, information theory and data compression.978-3-030-54303-7978-3-030-54304-4Series ISSN 2191-5768 Series E-ISSN 2191-5776
地板
發(fā)表于 2025-3-22 05:23:48 | 只看該作者
Introduction,., after which the process continues sequentially. We are interested in constructing predictors . whose conditional probabilities .(?|.., …, ..) converge (in some sense) to the “true” .-conditional probabilities .(?|.., …, ..), as the sequence of observations increases (.?→.). We would also like this convergence to be as fast as possible.
5#
發(fā)表于 2025-3-22 11:44:11 | 只看該作者
6#
發(fā)表于 2025-3-22 14:26:03 | 只看該作者
Conditions Under Which One Measure Is a Predictor for Another,orem .): absolute continuity is preserved under summation with arbitrary measure as follows directly from its definition (Definition .). For KL divergence, it is guaranteed by (.). Here we show that for other losses this is not necessarily the case.
7#
發(fā)表于 2025-3-22 19:31:18 | 只看該作者
8#
發(fā)表于 2025-3-22 23:18:06 | 只看該作者
Notation and Definitions, …, ... We consider stochastic processes (probability measures) on . where . is the sigma-field generated by the (countable) set . of cylinders, . where the words .. take all possible values in .. We use . for expectation with respect to a measure ..
9#
發(fā)表于 2025-3-23 03:06:45 | 只看該作者
10#
發(fā)表于 2025-3-23 08:25:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 04:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
刚察县| 内丘县| 兴文县| 大姚县| 彝良县| 西丰县| 玉树县| 平昌县| 清涧县| 长沙市| 湖南省| 喀什市| 富宁县| 大余县| 云阳县| 南汇区| 澄迈县| 东海县| 周至县| 临猗县| 宝丰县| 定兴县| 崇义县| 江都市| 金堂县| 秦安县| 枣强县| 洛阳市| 任丘市| 平湖市| 新安县| 镇平县| 武胜县| 湘西| 东山县| 普宁市| 四子王旗| 库伦旗| 上栗县| 抚州市| 南通市|