找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Riemann Legacy; Riemannian Ideas in Krzysztof Maurin Book 1997 Springer Science+Business Media Dordrecht 1997 Mathematica.Riemann surf

[復(fù)制鏈接]
查看: 12142|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:37:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Riemann Legacy
副標(biāo)題Riemannian Ideas in
編輯Krzysztof Maurin
視頻videohttp://file.papertrans.cn/919/918634/918634.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: The Riemann Legacy; Riemannian Ideas in  Krzysztof Maurin Book 1997 Springer Science+Business Media Dordrecht 1997 Mathematica.Riemann surf
描述very small domain (environment) affects through analytic continuation the whole of Riemann surface, or analytic manifold . Riemann was a master at applying this principle and also the first who noticed and emphasized that a meromorphic function is determined by its ‘singularities‘. Therefore he is rightly regarded as the father of the huge ‘theory of singularities‘ which is developing so quickly and whose importance (also for physics) can hardly be overe~timated. Amazing and mysterious for our cognition is the role of Euclidean space. Even today many philosophers believe (following Kant) that ‘real space‘ is Euclidean and other spaces being ‘a(chǎn)bstract constructs of mathematicians, should not be called spaces‘. The thesis is no longer tenable - the whole of physics testifies to that. Nevertheless, there is a grain of truth in the 3 ‘prejudice‘: E (three-dimensional Euclidean space) is special in a particular way pleasantly familiar to us - in it we (also we mathematicians!) feel particularly ‘confident‘ and move with a sense of greater ‘safety‘ than in non-Euclidean spaces. For this reason perhaps, Riemann space M stands out among the multitude of ‘interesting geometries‘. For it is:
出版日期Book 1997
關(guān)鍵詞Mathematica; Riemann surface; Volume; algebra; complex geometry; energy; fields; geometry; mathematics; numbe
版次1
doihttps://doi.org/10.1007/978-94-015-8939-0
isbn_softcover978-90-481-4876-9
isbn_ebook978-94-015-8939-0
copyrightSpringer Science+Business Media Dordrecht 1997
The information of publication is updating

書目名稱The Riemann Legacy影響因子(影響力)




書目名稱The Riemann Legacy影響因子(影響力)學(xué)科排名




書目名稱The Riemann Legacy網(wǎng)絡(luò)公開度




書目名稱The Riemann Legacy網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Riemann Legacy被引頻次




書目名稱The Riemann Legacy被引頻次學(xué)科排名




書目名稱The Riemann Legacy年度引用




書目名稱The Riemann Legacy年度引用學(xué)科排名




書目名稱The Riemann Legacy讀者反饋




書目名稱The Riemann Legacy讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:17:32 | 只看該作者
ter at applying this principle and also the first who noticed and emphasized that a meromorphic function is determined by its ‘singularities‘. Therefore he is rightly regarded as the father of the huge ‘theory of singularities‘ which is developing so quickly and whose importance (also for physics) c
板凳
發(fā)表于 2025-3-22 04:28:55 | 只看該作者
地板
發(fā)表于 2025-3-22 07:42:34 | 只看該作者
5#
發(fā)表于 2025-3-22 12:04:33 | 只看該作者
978-90-481-4876-9Springer Science+Business Media Dordrecht 1997
6#
發(fā)表于 2025-3-22 12:54:17 | 只看該作者
Book 1997ial in a particular way pleasantly familiar to us - in it we (also we mathematicians!) feel particularly ‘confident‘ and move with a sense of greater ‘safety‘ than in non-Euclidean spaces. For this reason perhaps, Riemann space M stands out among the multitude of ‘interesting geometries‘. For it is:
7#
發(fā)表于 2025-3-22 17:41:35 | 只看該作者
e) is special in a particular way pleasantly familiar to us - in it we (also we mathematicians!) feel particularly ‘confident‘ and move with a sense of greater ‘safety‘ than in non-Euclidean spaces. For this reason perhaps, Riemann space M stands out among the multitude of ‘interesting geometries‘. For it is:978-90-481-4876-9978-94-015-8939-0
8#
發(fā)表于 2025-3-22 23:19:19 | 只看該作者
9#
發(fā)表于 2025-3-23 05:07:52 | 只看該作者
10#
發(fā)表于 2025-3-23 05:56:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 13:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
牡丹江市| 兴国县| 南澳县| 哈巴河县| 本溪市| 焦作市| 铜山县| 临邑县| 蓬安县| 盐山县| 怀集县| 四川省| 斗六市| 吉安县| 富宁县| 福泉市| 大理市| 浏阳市| 龙泉市| 赞皇县| 景洪市| 古蔺县| 三亚市| 柘荣县| 页游| 屏山县| 城口县| 法库县| 九台市| 五莲县| 海兴县| 宁津县| 巫山县| 哈巴河县| 青田县| 沂源县| 五常市| 桑日县| 呈贡县| 离岛区| 兴国县|