找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: The Riemann Legacy; Riemannian Ideas in Krzysztof Maurin Book 1997 Springer Science+Business Media Dordrecht 1997 Mathematica.Riemann surf

[復(fù)制鏈接]
查看: 12140|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:37:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Riemann Legacy
副標(biāo)題Riemannian Ideas in
編輯Krzysztof Maurin
視頻videohttp://file.papertrans.cn/919/918634/918634.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: The Riemann Legacy; Riemannian Ideas in  Krzysztof Maurin Book 1997 Springer Science+Business Media Dordrecht 1997 Mathematica.Riemann surf
描述very small domain (environment) affects through analytic continuation the whole of Riemann surface, or analytic manifold . Riemann was a master at applying this principle and also the first who noticed and emphasized that a meromorphic function is determined by its ‘singularities‘. Therefore he is rightly regarded as the father of the huge ‘theory of singularities‘ which is developing so quickly and whose importance (also for physics) can hardly be overe~timated. Amazing and mysterious for our cognition is the role of Euclidean space. Even today many philosophers believe (following Kant) that ‘real space‘ is Euclidean and other spaces being ‘a(chǎn)bstract constructs of mathematicians, should not be called spaces‘. The thesis is no longer tenable - the whole of physics testifies to that. Nevertheless, there is a grain of truth in the 3 ‘prejudice‘: E (three-dimensional Euclidean space) is special in a particular way pleasantly familiar to us - in it we (also we mathematicians!) feel particularly ‘confident‘ and move with a sense of greater ‘safety‘ than in non-Euclidean spaces. For this reason perhaps, Riemann space M stands out among the multitude of ‘interesting geometries‘. For it is:
出版日期Book 1997
關(guān)鍵詞Mathematica; Riemann surface; Volume; algebra; complex geometry; energy; fields; geometry; mathematics; numbe
版次1
doihttps://doi.org/10.1007/978-94-015-8939-0
isbn_softcover978-90-481-4876-9
isbn_ebook978-94-015-8939-0
copyrightSpringer Science+Business Media Dordrecht 1997
The information of publication is updating

書目名稱The Riemann Legacy影響因子(影響力)




書目名稱The Riemann Legacy影響因子(影響力)學(xué)科排名




書目名稱The Riemann Legacy網(wǎng)絡(luò)公開度




書目名稱The Riemann Legacy網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱The Riemann Legacy被引頻次




書目名稱The Riemann Legacy被引頻次學(xué)科排名




書目名稱The Riemann Legacy年度引用




書目名稱The Riemann Legacy年度引用學(xué)科排名




書目名稱The Riemann Legacy讀者反饋




書目名稱The Riemann Legacy讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:17:32 | 只看該作者
ter at applying this principle and also the first who noticed and emphasized that a meromorphic function is determined by its ‘singularities‘. Therefore he is rightly regarded as the father of the huge ‘theory of singularities‘ which is developing so quickly and whose importance (also for physics) c
板凳
發(fā)表于 2025-3-22 04:28:55 | 只看該作者
地板
發(fā)表于 2025-3-22 07:42:34 | 只看該作者
5#
發(fā)表于 2025-3-22 12:04:33 | 只看該作者
978-90-481-4876-9Springer Science+Business Media Dordrecht 1997
6#
發(fā)表于 2025-3-22 12:54:17 | 只看該作者
Book 1997ial in a particular way pleasantly familiar to us - in it we (also we mathematicians!) feel particularly ‘confident‘ and move with a sense of greater ‘safety‘ than in non-Euclidean spaces. For this reason perhaps, Riemann space M stands out among the multitude of ‘interesting geometries‘. For it is:
7#
發(fā)表于 2025-3-22 17:41:35 | 只看該作者
e) is special in a particular way pleasantly familiar to us - in it we (also we mathematicians!) feel particularly ‘confident‘ and move with a sense of greater ‘safety‘ than in non-Euclidean spaces. For this reason perhaps, Riemann space M stands out among the multitude of ‘interesting geometries‘. For it is:978-90-481-4876-9978-94-015-8939-0
8#
發(fā)表于 2025-3-22 23:19:19 | 只看該作者
9#
發(fā)表于 2025-3-23 05:07:52 | 只看該作者
10#
發(fā)表于 2025-3-23 05:56:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 09:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延津县| 南平市| 凤山市| 茌平县| 通许县| 扎囊县| 崇义县| 深州市| 绥芬河市| 团风县| 明溪县| 图片| 江永县| 怀安县| 韶山市| 当涂县| 丹寨县| 义乌市| 英德市| 延寿县| 喀什市| 休宁县| 井冈山市| 徐水县| 乃东县| 鄂尔多斯市| 陇西县| 兖州市| 丰县| 得荣县| 焉耆| 仪征市| 五指山市| 赞皇县| 承德县| 定陶县| 万山特区| 浮梁县| 纳雍县| 云龙县| 朝阳区|