找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: The Non-Euclidean, Hyperbolic Plane; Its Structure and Co Paul Kelly,Gordon Matthews Textbook 1981 Springer-Verlag New York, Inc. 1981 Hype

[復(fù)制鏈接]
查看: 7151|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:55:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱The Non-Euclidean, Hyperbolic Plane
副標(biāo)題Its Structure and Co
編輯Paul Kelly,Gordon Matthews
視頻videohttp://file.papertrans.cn/916/915073/915073.mp4
叢書(shū)名稱Universitext
圖書(shū)封面Titlebook: The Non-Euclidean, Hyperbolic Plane; Its Structure and Co Paul Kelly,Gordon Matthews Textbook 1981 Springer-Verlag New York, Inc. 1981 Hype
描述The discovery of hyperbolic geometry, and the subsequent proof that this geometry is just as logical as Euclid‘s, had a profound in- fluence on man‘s understanding of mathematics and the relation of mathematical geometry to the physical world. It is now possible, due in large part to axioms devised by George Birkhoff, to give an accurate, elementary development of hyperbolic plane geometry. Also, using the Poincare model and inversive geometry, the equiconsistency of hyperbolic plane geometry and euclidean plane geometry can be proved without the use of any advanced mathematics. These two facts provided both the motivation and the two central themes of the present work. Basic hyperbolic plane geometry, and the proof of its equal footing with euclidean plane geometry, is presented here in terms acces- sible to anyone with a good background in high school mathematics. The development, however, is especially directed to college students who may become secondary teachers. For that reason, the treatment is de- signed to emphasize those aspects of hyperbolic plane geometry which contribute to the skills, knowledge, and insights needed to teach eucli- dean geometry with some mastery.
出版日期Textbook 1981
關(guān)鍵詞Hyperbolische Geometrie; Plane; congruence; construction; function; geometry; hyperbolic geometry; knowledg
版次1
doihttps://doi.org/10.1007/978-1-4613-8125-9
isbn_softcover978-0-387-90552-5
isbn_ebook978-1-4613-8125-9Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag New York, Inc. 1981
The information of publication is updating

書(shū)目名稱The Non-Euclidean, Hyperbolic Plane影響因子(影響力)




書(shū)目名稱The Non-Euclidean, Hyperbolic Plane影響因子(影響力)學(xué)科排名




書(shū)目名稱The Non-Euclidean, Hyperbolic Plane網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱The Non-Euclidean, Hyperbolic Plane網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱The Non-Euclidean, Hyperbolic Plane被引頻次




書(shū)目名稱The Non-Euclidean, Hyperbolic Plane被引頻次學(xué)科排名




書(shū)目名稱The Non-Euclidean, Hyperbolic Plane年度引用




書(shū)目名稱The Non-Euclidean, Hyperbolic Plane年度引用學(xué)科排名




書(shū)目名稱The Non-Euclidean, Hyperbolic Plane讀者反饋




書(shū)目名稱The Non-Euclidean, Hyperbolic Plane讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:39:27 | 只看該作者
0172-5939 those aspects of hyperbolic plane geometry which contribute to the skills, knowledge, and insights needed to teach eucli- dean geometry with some mastery.978-0-387-90552-5978-1-4613-8125-9Series ISSN 0172-5939 Series E-ISSN 2191-6675
板凳
發(fā)表于 2025-3-22 01:42:53 | 只看該作者
地板
發(fā)表于 2025-3-22 07:26:51 | 只看該作者
The Non-Euclidean, Hyperbolic Plane978-1-4613-8125-9Series ISSN 0172-5939 Series E-ISSN 2191-6675
5#
發(fā)表于 2025-3-22 10:57:14 | 只看該作者
Universitexthttp://image.papertrans.cn/t/image/915073.jpg
6#
發(fā)表于 2025-3-22 13:04:00 | 只看該作者
7#
發(fā)表于 2025-3-22 17:32:18 | 只看該作者
8#
發(fā)表于 2025-3-22 23:16:43 | 只看該作者
0172-5939 on man‘s understanding of mathematics and the relation of mathematical geometry to the physical world. It is now possible, due in large part to axioms devised by George Birkhoff, to give an accurate, elementary development of hyperbolic plane geometry. Also, using the Poincare model and inversive g
9#
發(fā)表于 2025-3-23 04:33:55 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:34:09 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 21:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
托克逊县| 定安县| 商洛市| 平乡县| 衡东县| 自贡市| 太白县| 西畴县| 五华县| 萝北县| 仙居县| 会理县| 通化市| 苏尼特右旗| 巧家县| 宜兴市| 云林县| 年辖:市辖区| 获嘉县| 乌拉特中旗| 宁城县| 平凉市| 连平县| 聂荣县| 海安县| 银川市| 那坡县| 板桥市| 弋阳县| 思南县| 邮箱| 南宁市| 台北市| 抚州市| 海原县| 蒙城县| 青铜峡市| 通化市| 木兰县| 南召县| 千阳县|