找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: The Non-Euclidean, Hyperbolic Plane; Its Structure and Co Paul Kelly,Gordon Matthews Textbook 1981 Springer-Verlag New York, Inc. 1981 Hype

[復(fù)制鏈接]
查看: 7157|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:55:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱The Non-Euclidean, Hyperbolic Plane
副標(biāo)題Its Structure and Co
編輯Paul Kelly,Gordon Matthews
視頻videohttp://file.papertrans.cn/916/915073/915073.mp4
叢書名稱Universitext
圖書封面Titlebook: The Non-Euclidean, Hyperbolic Plane; Its Structure and Co Paul Kelly,Gordon Matthews Textbook 1981 Springer-Verlag New York, Inc. 1981 Hype
描述The discovery of hyperbolic geometry, and the subsequent proof that this geometry is just as logical as Euclid‘s, had a profound in- fluence on man‘s understanding of mathematics and the relation of mathematical geometry to the physical world. It is now possible, due in large part to axioms devised by George Birkhoff, to give an accurate, elementary development of hyperbolic plane geometry. Also, using the Poincare model and inversive geometry, the equiconsistency of hyperbolic plane geometry and euclidean plane geometry can be proved without the use of any advanced mathematics. These two facts provided both the motivation and the two central themes of the present work. Basic hyperbolic plane geometry, and the proof of its equal footing with euclidean plane geometry, is presented here in terms acces- sible to anyone with a good background in high school mathematics. The development, however, is especially directed to college students who may become secondary teachers. For that reason, the treatment is de- signed to emphasize those aspects of hyperbolic plane geometry which contribute to the skills, knowledge, and insights needed to teach eucli- dean geometry with some mastery.
出版日期Textbook 1981
關(guān)鍵詞Hyperbolische Geometrie; Plane; congruence; construction; function; geometry; hyperbolic geometry; knowledg
版次1
doihttps://doi.org/10.1007/978-1-4613-8125-9
isbn_softcover978-0-387-90552-5
isbn_ebook978-1-4613-8125-9Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag New York, Inc. 1981
The information of publication is updating

書目名稱The Non-Euclidean, Hyperbolic Plane影響因子(影響力)




書目名稱The Non-Euclidean, Hyperbolic Plane影響因子(影響力)學(xué)科排名




書目名稱The Non-Euclidean, Hyperbolic Plane網(wǎng)絡(luò)公開(kāi)度




書目名稱The Non-Euclidean, Hyperbolic Plane網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱The Non-Euclidean, Hyperbolic Plane被引頻次




書目名稱The Non-Euclidean, Hyperbolic Plane被引頻次學(xué)科排名




書目名稱The Non-Euclidean, Hyperbolic Plane年度引用




書目名稱The Non-Euclidean, Hyperbolic Plane年度引用學(xué)科排名




書目名稱The Non-Euclidean, Hyperbolic Plane讀者反饋




書目名稱The Non-Euclidean, Hyperbolic Plane讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:39:27 | 只看該作者
0172-5939 those aspects of hyperbolic plane geometry which contribute to the skills, knowledge, and insights needed to teach eucli- dean geometry with some mastery.978-0-387-90552-5978-1-4613-8125-9Series ISSN 0172-5939 Series E-ISSN 2191-6675
板凳
發(fā)表于 2025-3-22 01:42:53 | 只看該作者
地板
發(fā)表于 2025-3-22 07:26:51 | 只看該作者
The Non-Euclidean, Hyperbolic Plane978-1-4613-8125-9Series ISSN 0172-5939 Series E-ISSN 2191-6675
5#
發(fā)表于 2025-3-22 10:57:14 | 只看該作者
Universitexthttp://image.papertrans.cn/t/image/915073.jpg
6#
發(fā)表于 2025-3-22 13:04:00 | 只看該作者
7#
發(fā)表于 2025-3-22 17:32:18 | 只看該作者
8#
發(fā)表于 2025-3-22 23:16:43 | 只看該作者
0172-5939 on man‘s understanding of mathematics and the relation of mathematical geometry to the physical world. It is now possible, due in large part to axioms devised by George Birkhoff, to give an accurate, elementary development of hyperbolic plane geometry. Also, using the Poincare model and inversive g
9#
發(fā)表于 2025-3-23 04:33:55 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:34:09 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 23:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林甸县| 开阳县| 太仆寺旗| 洛川县| 开阳县| 达尔| 五台县| 南平市| 巴彦淖尔市| 富顺县| 佳木斯市| 邵阳县| 闸北区| 竹北市| 鄄城县| 射洪县| 芷江| 平果县| 铜梁县| 海盐县| 苍南县| 清涧县| 新竹县| 库尔勒市| 汉阴县| 牡丹江市| 明溪县| 博罗县| 陆丰市| 江西省| 五华县| 靖江市| 万载县| 益阳市| 中方县| 四平市| 临沭县| 安丘市| 宝丰县| 高青县| 枣强县|