找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Symmetry: Representation Theory and Its Applications; In Honor of Nolan R. Roger Howe,Markus Hunziker,Jeb F. Willenbring Book 2014 Springer

[復(fù)制鏈接]
查看: 46704|回復(fù): 63
樓主
發(fā)表于 2025-3-21 16:27:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Symmetry: Representation Theory and Its Applications
副標(biāo)題In Honor of Nolan R.
編輯Roger Howe,Markus Hunziker,Jeb F. Willenbring
視頻videohttp://file.papertrans.cn/884/883989/883989.mp4
概述A unique and comprehensive tribute for Nolan R. Wallach, a mathematician with far-reaching expertise in a number of fields.Includes expository articles that will be accessible to a broad audience.Serv
叢書(shū)名稱Progress in Mathematics
圖書(shū)封面Titlebook: Symmetry: Representation Theory and Its Applications; In Honor of Nolan R. Roger Howe,Markus Hunziker,Jeb F. Willenbring Book 2014 Springer
描述Nolan Wallach‘s mathematical research is remarkable in both its breadth and? depth. His contributions to many fields include representation theory, harmonic analysis, algebraic geometry, combinatorics, number theory, differential equations, Riemannian geometry, ring theory, and quantum information theory. The touchstone and unifying thread running through all his work is the idea of symmetry. This volume is a collection of invited articles that pay tribute to Wallach‘s ideas, and show symmetry at work in a large variety of areas.The articles, predominantly expository, are written by distinguished mathematicians and contain sufficient preliminary material to reach the widest possible audiences. Graduate students, mathematicians, and physicists interested in representation theory and its applications will find many gems in this volume that have not appeared in print elsewhere.Contributors:D. Barbasch, K. Baur,?O. Bucicovschi,?B. Casselman, D. Ciubotaru, M. Colarusso, P. Delorme,?T. Enright, W.T.?Gan,?A Garsia,?G. Gour,?B. Gross,?J. Haglund, G. Han,?P. Harris, J. Hong, R. Howe, M. Hunziker, B. Kostant, H. Kraft, D. Meyer, R. Miatello, L. Ni, G. Schwarz, L. Small, D. Vogan, N. Wallach,
出版日期Book 2014
關(guān)鍵詞Symmetry, Representation Theory, Harmonic Analysis; combinatorics
版次1
doihttps://doi.org/10.1007/978-1-4939-1590-3
isbn_softcover978-1-4939-4384-5
isbn_ebook978-1-4939-1590-3Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 2014
The information of publication is updating

書(shū)目名稱Symmetry: Representation Theory and Its Applications影響因子(影響力)




書(shū)目名稱Symmetry: Representation Theory and Its Applications影響因子(影響力)學(xué)科排名




書(shū)目名稱Symmetry: Representation Theory and Its Applications網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Symmetry: Representation Theory and Its Applications網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Symmetry: Representation Theory and Its Applications被引頻次




書(shū)目名稱Symmetry: Representation Theory and Its Applications被引頻次學(xué)科排名




書(shū)目名稱Symmetry: Representation Theory and Its Applications年度引用




書(shū)目名稱Symmetry: Representation Theory and Its Applications年度引用學(xué)科排名




書(shū)目名稱Symmetry: Representation Theory and Its Applications讀者反饋




書(shū)目名稱Symmetry: Representation Theory and Its Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:01:52 | 只看該作者
0743-1643 ry articles that will be accessible to a broad audience.ServNolan Wallach‘s mathematical research is remarkable in both its breadth and? depth. His contributions to many fields include representation theory, harmonic analysis, algebraic geometry, combinatorics, number theory, differential equations,
板凳
發(fā)表于 2025-3-22 02:29:24 | 只看該作者
地板
發(fā)表于 2025-3-22 05:02:33 | 只看該作者
Proof of the 2-part compositional shuffle conjecture, functions whose Dyck paths hit the diagonal by (. .,?. .,?.,?. .) and whose diagonal word is a shuffle of . increasing words of lengths . .,?. .,?.,?. .. In this paper we prove the case .?=?2 of this conjecture.
5#
發(fā)表于 2025-3-22 11:34:09 | 只看該作者
,Sums of squares of Littlewood–Richardson coefficients and GL,-harmonic polynomials, then related to the Hilbert series of the .-invariant subspace in the GL.-harmonic polynomials (in the sense of Kostant), where . denotes a block diagonal embedding of a product of general linear groups. We also consider other specializations of this Hilbert series.
6#
發(fā)表于 2025-3-22 15:06:12 | 只看該作者
7#
發(fā)表于 2025-3-22 20:36:25 | 只看該作者
Principal series representations of infinite-dimensional Lie groups, I: Minimal parabolic subgroupspal series representations. We look at the unitary representation theory of the classical lim-compact groups .(.), .(.) and .(.) in order to construct the inducing representations, and we indicate some of the analytic considerations in the actual construction of the induced representations.
8#
發(fā)表于 2025-3-22 22:23:17 | 只看該作者
Arithmetic invariant theory,y of the .-algebra of .-invariant polynomials on ., and the relation between these invariants and the .-orbits on ., usually under the hypothesis that the base field . is algebraically closed. In favorable cases, one can determine the geometric quotient . and can identify certain fibers of the morph
9#
發(fā)表于 2025-3-23 03:11:29 | 只看該作者
,Structure constants of Kac–Moody Lie algebras,ensional Lie algebras, which rely on the additive structure of the roots, it reduces to computations in the extended Weyl group first defined by Jacques Tits in about 1966. The new algorithm has some theoretical interest, and its basis is a mathematical result generalizing a theorem of Tits about th
10#
發(fā)表于 2025-3-23 09:27:07 | 只看該作者
,The Gelfand–Zeitlin integrable system and ,-orbits on the flag variety,d Wallach in 2006. We discuss results concerning the geometry of the set of strongly regular elements, which consists of the points where the Gelfand–Zeitlin flow is Lagrangian. We use the theory of .-orbits on the flag variety . of . to describe the strongly regular elements in the nilfiber of the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都昌县| 诏安县| 若羌县| 阿瓦提县| 陆河县| 阿瓦提县| 卢龙县| 翁牛特旗| 巫山县| 神农架林区| 麦盖提县| 独山县| 仙桃市| 巴彦淖尔市| 犍为县| 泉州市| 深州市| 十堰市| 军事| 台州市| 色达县| 和顺县| 云阳县| 南皮县| 蕉岭县| 宽甸| 武川县| 惠水县| 盘锦市| 蒙阴县| 双桥区| 酒泉市| 天祝| 遵化市| 宝清县| 十堰市| 平舆县| 新宁县| 克拉玛依市| 淮北市| 阳新县|