找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Symmetry: Representation Theory and Its Applications; In Honor of Nolan R. Roger Howe,Markus Hunziker,Jeb F. Willenbring Book 2014 Springer

[復制鏈接]
查看: 46815|回復: 63
樓主
發(fā)表于 2025-3-21 16:27:09 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Symmetry: Representation Theory and Its Applications
副標題In Honor of Nolan R.
編輯Roger Howe,Markus Hunziker,Jeb F. Willenbring
視頻videohttp://file.papertrans.cn/884/883989/883989.mp4
概述A unique and comprehensive tribute for Nolan R. Wallach, a mathematician with far-reaching expertise in a number of fields.Includes expository articles that will be accessible to a broad audience.Serv
叢書名稱Progress in Mathematics
圖書封面Titlebook: Symmetry: Representation Theory and Its Applications; In Honor of Nolan R. Roger Howe,Markus Hunziker,Jeb F. Willenbring Book 2014 Springer
描述Nolan Wallach‘s mathematical research is remarkable in both its breadth and? depth. His contributions to many fields include representation theory, harmonic analysis, algebraic geometry, combinatorics, number theory, differential equations, Riemannian geometry, ring theory, and quantum information theory. The touchstone and unifying thread running through all his work is the idea of symmetry. This volume is a collection of invited articles that pay tribute to Wallach‘s ideas, and show symmetry at work in a large variety of areas.The articles, predominantly expository, are written by distinguished mathematicians and contain sufficient preliminary material to reach the widest possible audiences. Graduate students, mathematicians, and physicists interested in representation theory and its applications will find many gems in this volume that have not appeared in print elsewhere.Contributors:D. Barbasch, K. Baur,?O. Bucicovschi,?B. Casselman, D. Ciubotaru, M. Colarusso, P. Delorme,?T. Enright, W.T.?Gan,?A Garsia,?G. Gour,?B. Gross,?J. Haglund, G. Han,?P. Harris, J. Hong, R. Howe, M. Hunziker, B. Kostant, H. Kraft, D. Meyer, R. Miatello, L. Ni, G. Schwarz, L. Small, D. Vogan, N. Wallach,
出版日期Book 2014
關鍵詞Symmetry, Representation Theory, Harmonic Analysis; combinatorics
版次1
doihttps://doi.org/10.1007/978-1-4939-1590-3
isbn_softcover978-1-4939-4384-5
isbn_ebook978-1-4939-1590-3Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 2014
The information of publication is updating

書目名稱Symmetry: Representation Theory and Its Applications影響因子(影響力)




書目名稱Symmetry: Representation Theory and Its Applications影響因子(影響力)學科排名




書目名稱Symmetry: Representation Theory and Its Applications網(wǎng)絡公開度




書目名稱Symmetry: Representation Theory and Its Applications網(wǎng)絡公開度學科排名




書目名稱Symmetry: Representation Theory and Its Applications被引頻次




書目名稱Symmetry: Representation Theory and Its Applications被引頻次學科排名




書目名稱Symmetry: Representation Theory and Its Applications年度引用




書目名稱Symmetry: Representation Theory and Its Applications年度引用學科排名




書目名稱Symmetry: Representation Theory and Its Applications讀者反饋




書目名稱Symmetry: Representation Theory and Its Applications讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-22 00:01:52 | 只看該作者
0743-1643 ry articles that will be accessible to a broad audience.ServNolan Wallach‘s mathematical research is remarkable in both its breadth and? depth. His contributions to many fields include representation theory, harmonic analysis, algebraic geometry, combinatorics, number theory, differential equations,
板凳
發(fā)表于 2025-3-22 02:29:24 | 只看該作者
地板
發(fā)表于 2025-3-22 05:02:33 | 只看該作者
Proof of the 2-part compositional shuffle conjecture, functions whose Dyck paths hit the diagonal by (. .,?. .,?.,?. .) and whose diagonal word is a shuffle of . increasing words of lengths . .,?. .,?.,?. .. In this paper we prove the case .?=?2 of this conjecture.
5#
發(fā)表于 2025-3-22 11:34:09 | 只看該作者
,Sums of squares of Littlewood–Richardson coefficients and GL,-harmonic polynomials, then related to the Hilbert series of the .-invariant subspace in the GL.-harmonic polynomials (in the sense of Kostant), where . denotes a block diagonal embedding of a product of general linear groups. We also consider other specializations of this Hilbert series.
6#
發(fā)表于 2025-3-22 15:06:12 | 只看該作者
7#
發(fā)表于 2025-3-22 20:36:25 | 只看該作者
Principal series representations of infinite-dimensional Lie groups, I: Minimal parabolic subgroupspal series representations. We look at the unitary representation theory of the classical lim-compact groups .(.), .(.) and .(.) in order to construct the inducing representations, and we indicate some of the analytic considerations in the actual construction of the induced representations.
8#
發(fā)表于 2025-3-22 22:23:17 | 只看該作者
Arithmetic invariant theory,y of the .-algebra of .-invariant polynomials on ., and the relation between these invariants and the .-orbits on ., usually under the hypothesis that the base field . is algebraically closed. In favorable cases, one can determine the geometric quotient . and can identify certain fibers of the morph
9#
發(fā)表于 2025-3-23 03:11:29 | 只看該作者
,Structure constants of Kac–Moody Lie algebras,ensional Lie algebras, which rely on the additive structure of the roots, it reduces to computations in the extended Weyl group first defined by Jacques Tits in about 1966. The new algorithm has some theoretical interest, and its basis is a mathematical result generalizing a theorem of Tits about th
10#
發(fā)表于 2025-3-23 09:27:07 | 只看該作者
,The Gelfand–Zeitlin integrable system and ,-orbits on the flag variety,d Wallach in 2006. We discuss results concerning the geometry of the set of strongly regular elements, which consists of the points where the Gelfand–Zeitlin flow is Lagrangian. We use the theory of .-orbits on the flag variety . of . to describe the strongly regular elements in the nilfiber of the
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 10:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
奉贤区| 承德县| 清河县| 泰顺县| 阳城县| 昆明市| 山东| 定兴县| 葫芦岛市| 甘德县| 星座| 邻水| 盐城市| 萨嘎县| 治县。| 茶陵县| 长顺县| 莱西市| 会宁县| 遂川县| 都安| 莲花县| 眉山市| 泽州县| 通辽市| 兴仁县| 杭锦后旗| 华坪县| 关岭| 绥化市| 团风县| 稻城县| 班玛县| 神木县| 江源县| 元氏县| 乌拉特中旗| 定州市| 卓尼县| 普洱| 万宁市|