找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Surveys in Geometry II; Athanase Papadopoulos Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spring

[復(fù)制鏈接]
樓主: 是消毒
21#
發(fā)表于 2025-3-25 05:38:00 | 只看該作者
,Double Forms, Curvature Integrals and the Gauss–Bonnet Formula,umulative work of H. Hopf, W. Fenchel, C. B. Allendoerfer, A. Weil and S.S. Chern for higher-dimensional Riemannian manifolds. It relates the Euler characteristic of a Riemannian manifold to a curvature integral over the manifold plus a somewhat enigmatic boundary term. In this chapter, we revisit t
22#
發(fā)表于 2025-3-25 11:19:23 | 只看該作者
,Quaternions, Monge–Ampère Structures and ,-Surfaces,d widespread applications in hyperbolic geometry, general relativity, Teichmüller theory, and so on. In this chapter, we present a quaternionic reformulation of these ideas. This yields simpler proofs of the main results whilst pointing towards the higher-dimensional generalisation studied by the au
23#
發(fā)表于 2025-3-25 12:24:49 | 只看該作者
Lagrangian Grassmannians of Polarizations,ures on a real vector space, consisting of an inner product, a symplectic form, and a complex structure. A polarization is a decomposition of the complexified vector space into the eigenspaces of the complex structure; this information is equivalent to the specification of a compatible triple. When
24#
發(fā)表于 2025-3-25 18:53:23 | 只看該作者
25#
發(fā)表于 2025-3-25 21:13:24 | 只看該作者
26#
發(fā)表于 2025-3-26 03:14:26 | 只看該作者
On the Geometry of Finite Homogeneous Subsets of Euclidean Spaces,of regular and semiregular polytopes in Euclidean spaces by whether or not their vertex sets have the normal homogeneity property or the Clifford–Wolf homogeneity property. Every finite homogeneous metric subspace of a Euclidean space represents the vertex set of a compact convex polytope whose isom
27#
發(fā)表于 2025-3-26 05:45:44 | 只看該作者
28#
發(fā)表于 2025-3-26 10:04:44 | 只看該作者
29#
發(fā)表于 2025-3-26 13:13:12 | 只看該作者
30#
發(fā)表于 2025-3-26 19:03:32 | 只看該作者
Lagrangian Grassmannians of Polarizations, This introduction would be useful for those interested in applications of polarizations to representation theory, loop groups, complex geometry, moduli spaces, quantization, and conformal field theory.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-2 01:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
化隆| 藁城市| 新沂市| 寿光市| 克山县| 莆田市| 陈巴尔虎旗| 浠水县| 兖州市| 交口县| 三都| 泽库县| 丰城市| 韶山市| 香港 | 麻城市| 福安市| 石家庄市| 紫阳县| 罗定市| 昂仁县| 东阿县| 普洱| 县级市| 云梦县| 米林县| 汉源县| 安溪县| 铜陵市| 句容市| 辉县市| 塔城市| 厦门市| 平邑县| 内江市| 蕉岭县| 永兴县| 资兴市| 清原| 中宁县| 南涧|