找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Statistical Methods for Dynamic Treatment Regimes; Reinforcement Learni Bibhas Chakraborty,Erica E.M. Moodie Textbook 2013 Springer Science

[復(fù)制鏈接]
樓主: Constrict
11#
發(fā)表于 2025-3-23 12:02:34 | 只看該作者
12#
發(fā)表于 2025-3-23 15:17:09 | 只看該作者
1431-8776 oaches to the development of dynamic treatment regime models.Statistical Methods for Dynamic Treatment Regimes. shares state of the art of statistical methods developed to address questions of estimation and inference for dynamic treatment regimes, a branch of personalized medicine. This volume demo
13#
發(fā)表于 2025-3-23 21:02:29 | 只看該作者
14#
發(fā)表于 2025-3-23 22:23:28 | 只看該作者
15#
發(fā)表于 2025-3-24 04:33:17 | 只看該作者
Statistical Reinforcement Learning,sequence of treatments. This problem bears strong resemblance to the problem of reinforcement learning in computer science, a branch of machine learning that deals with the problem of multi-stage, sequential decision making by a learning agent. In this chapter, we review the necessary concepts of re
16#
發(fā)表于 2025-3-24 09:01:44 | 只看該作者
17#
發(fā)表于 2025-3-24 12:56:49 | 只看該作者
Estimation of Optimal DTRs by Directly Modeling Regimes,ling the conditional mean outcome: inverse probability of treatment weighting, marginal structural models, and classification-based methods. The fundamental difference between the approaches considered in the current chapter and those considered in previous chapters (e.g. Q-learning and G-estimation
18#
發(fā)表于 2025-3-24 17:51:02 | 只看該作者
Inference and Non-regularity,he optimal treatments at subsequent stages are non-unique for at least some strictly positive proportion of subjects in the population. We discuss and illustrate the phenomenon using Q-learning and G-estimation, and propose a number of strategies to mitigate the non-regularity including thresholding
19#
發(fā)表于 2025-3-24 19:10:52 | 只看該作者
Statistical Reinforcement Learning,inforcement learning, connect them to the relevant statistical literature, and develop a mathematical framework that will enable us to treat the problem of estimating the optimal dynamic treatment regimes rigorously.
20#
發(fā)表于 2025-3-24 23:50:32 | 只看該作者
Textbook 2013ference for dynamic treatment regimes, a branch of personalized medicine. This volume demonstrates these methods with their conceptual underpinnings and illustration through analysis of real and simulated data. These methods are immediately applicable to the practice of personalized medicine, which
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 13:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
信宜市| 布拖县| 长兴县| 泰和县| 德州市| 将乐县| 正定县| 嘉荫县| 油尖旺区| 柳林县| 黎城县| 遂宁市| 兰考县| 武功县| 巩义市| 余姚市| 通州区| 余江县| 东丰县| 呼图壁县| 诸城市| 宁强县| 武宣县| 襄城县| 白银市| 沛县| 谷城县| 漾濞| 黑龙江省| 喜德县| 靖远县| 泾川县| 南投县| 武城县| 吉安市| 尤溪县| 南投县| 昂仁县| 庄浪县| 德保县| 高唐县|