找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Statistical Methods for Dynamic Treatment Regimes; Reinforcement Learni Bibhas Chakraborty,Erica E.M. Moodie Textbook 2013 Springer Science

[復(fù)制鏈接]
查看: 44260|回復(fù): 43
樓主
發(fā)表于 2025-3-21 18:10:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Statistical Methods for Dynamic Treatment Regimes
副標(biāo)題Reinforcement Learni
編輯Bibhas Chakraborty,Erica E.M. Moodie
視頻videohttp://file.papertrans.cn/877/876516/876516.mp4
概述Pioneering review of DTRs to date through theory, explanation of concepts, and applications.Covers newest statistical and computational approaches to the development of dynamic treatment regime models
叢書名稱Statistics for Biology and Health
圖書封面Titlebook: Statistical Methods for Dynamic Treatment Regimes; Reinforcement Learni Bibhas Chakraborty,Erica E.M. Moodie Textbook 2013 Springer Science
描述.Statistical Methods for Dynamic Treatment Regimes. shares state of the art of statistical methods developed to address questions of estimation and inference for dynamic treatment regimes, a branch of personalized medicine. This volume demonstrates these methods with their conceptual underpinnings and illustration through analysis of real and simulated data. These methods are immediately applicable to the practice of personalized medicine, which is a medical paradigm that emphasizes the systematic use of individual patient information to optimize patient health care. This is the first single source to provide an overview of methodology and results gathered from journals, proceedings, and technical reports with the goal of orienting researchers to the field. The first chapter establishes context for the statistical reader in the landscape of personalized medicine. Readers need only have familiarity with elementary calculus, linear algebra, and basic large-sample theory to use this text. Throughout the text, authors direct readers to available code or packages in different statistical languages to facilitate implementation. In cases where code does not already exist, the authors prov
出版日期Textbook 2013
關(guān)鍵詞Causal inference; Dynamic treatments; Personalized medicine; Reinforcement learning; Statistical methods
版次1
doihttps://doi.org/10.1007/978-1-4614-7428-9
isbn_softcover978-1-4899-9030-3
isbn_ebook978-1-4614-7428-9Series ISSN 1431-8776 Series E-ISSN 2197-5671
issn_series 1431-8776
copyrightSpringer Science+Business Media New York 2013
The information of publication is updating

書目名稱Statistical Methods for Dynamic Treatment Regimes影響因子(影響力)




書目名稱Statistical Methods for Dynamic Treatment Regimes影響因子(影響力)學(xué)科排名




書目名稱Statistical Methods for Dynamic Treatment Regimes網(wǎng)絡(luò)公開度




書目名稱Statistical Methods for Dynamic Treatment Regimes網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Statistical Methods for Dynamic Treatment Regimes被引頻次




書目名稱Statistical Methods for Dynamic Treatment Regimes被引頻次學(xué)科排名




書目名稱Statistical Methods for Dynamic Treatment Regimes年度引用




書目名稱Statistical Methods for Dynamic Treatment Regimes年度引用學(xué)科排名




書目名稱Statistical Methods for Dynamic Treatment Regimes讀者反饋




書目名稱Statistical Methods for Dynamic Treatment Regimes讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:18:12 | 只看該作者
Textbook 2013amiliarity with elementary calculus, linear algebra, and basic large-sample theory to use this text. Throughout the text, authors direct readers to available code or packages in different statistical languages to facilitate implementation. In cases where code does not already exist, the authors prov
板凳
發(fā)表于 2025-3-22 03:14:22 | 只看該作者
978-1-4899-9030-3Springer Science+Business Media New York 2013
地板
發(fā)表于 2025-3-22 07:20:19 | 只看該作者
Statistical Methods for Dynamic Treatment Regimes978-1-4614-7428-9Series ISSN 1431-8776 Series E-ISSN 2197-5671
5#
發(fā)表于 2025-3-22 12:27:39 | 只看該作者
6#
發(fā)表于 2025-3-22 15:37:18 | 只看該作者
Estimation of DTRs for Alternative Outcome Types,In this chapter, we consider the estimation of dynamic treatment regimes for a variety of outcome types, including multi-dimensional continuous outcomes, time-to-event outcomes in the presence of censoring, and discrete outcomes. Methods discussed include Q-learning, marginal structural models, and a fully parametric, likelihood-based approach.
7#
發(fā)表于 2025-3-22 17:12:01 | 只看該作者
Additional Considerations and Final Thoughts,The statistical study of DTRs and associated methods of estimation is a young and growing field. As such, there are many topics which are only beginning to be explored. In this chapter, we point to some new developments and areas of research in the field.
8#
發(fā)表于 2025-3-22 21:27:03 | 只看該作者
9#
發(fā)表于 2025-3-23 01:21:45 | 只看該作者
10#
發(fā)表于 2025-3-23 07:44:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 16:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
自贡市| 沙河市| 平远县| 合水县| 乳源| 琼海市| 盘山县| 汶川县| 莱州市| 搜索| 星座| 兴海县| 涞水县| 南丰县| 定南县| 红河县| 来凤县| 珲春市| 读书| 保山市| 砀山县| 宁安市| 崇文区| 宜丰县| 诸城市| 泸定县| 环江| 醴陵市| 个旧市| 广德县| 宁海县| 遂川县| 黄骅市| 康保县| 淮北市| 甘孜| 兰溪市| 张北县| 克东县| 虞城县| 丹棱县|