找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Statistical Methods for Dynamic Treatment Regimes; Reinforcement Learni Bibhas Chakraborty,Erica E.M. Moodie Textbook 2013 Springer Science

[復制鏈接]
樓主: Constrict
11#
發(fā)表于 2025-3-23 12:02:34 | 只看該作者
12#
發(fā)表于 2025-3-23 15:17:09 | 只看該作者
1431-8776 oaches to the development of dynamic treatment regime models.Statistical Methods for Dynamic Treatment Regimes. shares state of the art of statistical methods developed to address questions of estimation and inference for dynamic treatment regimes, a branch of personalized medicine. This volume demo
13#
發(fā)表于 2025-3-23 21:02:29 | 只看該作者
14#
發(fā)表于 2025-3-23 22:23:28 | 只看該作者
15#
發(fā)表于 2025-3-24 04:33:17 | 只看該作者
Statistical Reinforcement Learning,sequence of treatments. This problem bears strong resemblance to the problem of reinforcement learning in computer science, a branch of machine learning that deals with the problem of multi-stage, sequential decision making by a learning agent. In this chapter, we review the necessary concepts of re
16#
發(fā)表于 2025-3-24 09:01:44 | 只看該作者
17#
發(fā)表于 2025-3-24 12:56:49 | 只看該作者
Estimation of Optimal DTRs by Directly Modeling Regimes,ling the conditional mean outcome: inverse probability of treatment weighting, marginal structural models, and classification-based methods. The fundamental difference between the approaches considered in the current chapter and those considered in previous chapters (e.g. Q-learning and G-estimation
18#
發(fā)表于 2025-3-24 17:51:02 | 只看該作者
Inference and Non-regularity,he optimal treatments at subsequent stages are non-unique for at least some strictly positive proportion of subjects in the population. We discuss and illustrate the phenomenon using Q-learning and G-estimation, and propose a number of strategies to mitigate the non-regularity including thresholding
19#
發(fā)表于 2025-3-24 19:10:52 | 只看該作者
Statistical Reinforcement Learning,inforcement learning, connect them to the relevant statistical literature, and develop a mathematical framework that will enable us to treat the problem of estimating the optimal dynamic treatment regimes rigorously.
20#
發(fā)表于 2025-3-24 23:50:32 | 只看該作者
Textbook 2013ference for dynamic treatment regimes, a branch of personalized medicine. This volume demonstrates these methods with their conceptual underpinnings and illustration through analysis of real and simulated data. These methods are immediately applicable to the practice of personalized medicine, which
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-1 00:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平凉市| 南充市| 昔阳县| 塔河县| 沧州市| 温宿县| 玛沁县| 白朗县| 常州市| 思南县| 阿克| 黄平县| 朔州市| 会东县| 岳西县| 邵东县| 吕梁市| 汨罗市| 石家庄市| 桐梓县| 三明市| 务川| 灌南县| 固始县| 临城县| 鹿邑县| 盐边县| 思南县| 安塞县| 汝南县| 永昌县| 鄂伦春自治旗| 徐水县| 盱眙县| 西平县| 湖南省| 清镇市| 大足县| 兴仁县| 凉山| 大同市|