找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Social Media Processing; 5th National Confere Yuming Li,Guoxiong Xiang,Mingwen Wang Conference proceedings 2016 Springer Nature Singapore P

[復(fù)制鏈接]
查看: 30066|回復(fù): 64
樓主
發(fā)表于 2025-3-21 20:04:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Social Media Processing
副標(biāo)題5th National Confere
編輯Yuming Li,Guoxiong Xiang,Mingwen Wang
視頻videohttp://file.papertrans.cn/870/869641/869641.mp4
概述Includes supplementary material:
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Social Media Processing; 5th National Confere Yuming Li,Guoxiong Xiang,Mingwen Wang Conference proceedings 2016 Springer Nature Singapore P
描述This book constitutes the thoroughly refereed proceedings of the 5th National Conference of Social Media Processing, SMP 2016, held in Nanchang, China, in October 2016..The 24 revised full papers presented were carefully reviewed and selected from 109 submissions. The papers address issues such as: mining social media and applications; natural language processing; data mining; information retrieval; emergent social media processing problems.
出版日期Conference proceedings 2016
關(guān)鍵詞social networks; prediction; recommendation; Convolutional Neural Network; Community Question Answering;
版次1
doihttps://doi.org/10.1007/978-981-10-2993-6
isbn_softcover978-981-10-2992-9
isbn_ebook978-981-10-2993-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Singapore Pte Ltd. 2016
The information of publication is updating

書目名稱Social Media Processing影響因子(影響力)




書目名稱Social Media Processing影響因子(影響力)學(xué)科排名




書目名稱Social Media Processing網(wǎng)絡(luò)公開度




書目名稱Social Media Processing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Social Media Processing被引頻次




書目名稱Social Media Processing被引頻次學(xué)科排名




書目名稱Social Media Processing年度引用




書目名稱Social Media Processing年度引用學(xué)科排名




書目名稱Social Media Processing讀者反饋




書目名稱Social Media Processing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:42:29 | 只看該作者
1865-0929 ssions. The papers address issues such as: mining social media and applications; natural language processing; data mining; information retrieval; emergent social media processing problems.978-981-10-2992-9978-981-10-2993-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
板凳
發(fā)表于 2025-3-22 02:18:47 | 只看該作者
Conference proceedings 2016, in October 2016..The 24 revised full papers presented were carefully reviewed and selected from 109 submissions. The papers address issues such as: mining social media and applications; natural language processing; data mining; information retrieval; emergent social media processing problems.
地板
發(fā)表于 2025-3-22 08:08:33 | 只看該作者
5#
發(fā)表于 2025-3-22 08:45:15 | 只看該作者
A Novel Approach for Relation Extraction with Few Labeled Data,can be directly applied to classify mentions of newly defined relation without labeling new training data. Experimental results demonstrate that our approach achieves competitive performance and can be incorporated with existing approaches to boost performance.
6#
發(fā)表于 2025-3-22 15:06:47 | 只看該作者
Query Intent Detection Based on Clustering of Phrase Embedding,tected as query intents. Experimental results, based on the NTCIR-12 IMine-2 corpus, show that query intent generation model via phrase embedding significantly outperforms the state-of-art clustering algorithms in query intent detection.
7#
發(fā)表于 2025-3-22 20:02:51 | 只看該作者
Individual Friends Recommendation Based on Random Walk with Restart in Social Networks,erimental results show that the performance of friend recommendation outperforms the existing methods, and the proposed algorithm is effective and efficient in terms of PV Value, UV Value and Conversion Rate.
8#
發(fā)表于 2025-3-22 22:16:24 | 只看該作者
Extracting Opinion Expression with Neural Attention,model on this task. Visualization of some examples show that our model can make use of correlation of words in the sentences and emphasize the crucial parts for this task to improve the performance compared with the vanilla RNNs.
9#
發(fā)表于 2025-3-23 03:51:48 | 只看該作者
Topic Model Based Adaptation Data Selection for Domain-Specific Machine Translation, from the general-domain. Experiments on an end-to-end domain-specific MT task show that our method outperforms the state of the art, yielding at least 1.5 BLEU points at different scales of training data.
10#
發(fā)表于 2025-3-23 09:37:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 19:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宿松县| 绥滨县| 无锡市| 彰武县| 平邑县| 奎屯市| 闵行区| 二连浩特市| 阿拉善右旗| 惠安县| 清徐县| 宁明县| 彝良县| 天门市| 尚义县| 通城县| 南召县| 西丰县| 兰考县| 太原市| 体育| 于都县| 伊宁县| 锦屏县| 万全县| 界首市| 湖南省| 绥江县| 灵武市| 昌平区| 普陀区| 新疆| 探索| 苗栗县| 静乐县| 肥城市| 平邑县| 上高县| 新化县| 成都市| 马山县|