找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Social Media Processing; 5th National Confere Yuming Li,Guoxiong Xiang,Mingwen Wang Conference proceedings 2016 Springer Nature Singapore P

[復制鏈接]
查看: 30068|回復: 64
樓主
發(fā)表于 2025-3-21 20:04:09 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Social Media Processing
副標題5th National Confere
編輯Yuming Li,Guoxiong Xiang,Mingwen Wang
視頻videohttp://file.papertrans.cn/870/869641/869641.mp4
概述Includes supplementary material:
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Social Media Processing; 5th National Confere Yuming Li,Guoxiong Xiang,Mingwen Wang Conference proceedings 2016 Springer Nature Singapore P
描述This book constitutes the thoroughly refereed proceedings of the 5th National Conference of Social Media Processing, SMP 2016, held in Nanchang, China, in October 2016..The 24 revised full papers presented were carefully reviewed and selected from 109 submissions. The papers address issues such as: mining social media and applications; natural language processing; data mining; information retrieval; emergent social media processing problems.
出版日期Conference proceedings 2016
關(guān)鍵詞social networks; prediction; recommendation; Convolutional Neural Network; Community Question Answering;
版次1
doihttps://doi.org/10.1007/978-981-10-2993-6
isbn_softcover978-981-10-2992-9
isbn_ebook978-981-10-2993-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Singapore Pte Ltd. 2016
The information of publication is updating

書目名稱Social Media Processing影響因子(影響力)




書目名稱Social Media Processing影響因子(影響力)學科排名




書目名稱Social Media Processing網(wǎng)絡(luò)公開度




書目名稱Social Media Processing網(wǎng)絡(luò)公開度學科排名




書目名稱Social Media Processing被引頻次




書目名稱Social Media Processing被引頻次學科排名




書目名稱Social Media Processing年度引用




書目名稱Social Media Processing年度引用學科排名




書目名稱Social Media Processing讀者反饋




書目名稱Social Media Processing讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:42:29 | 只看該作者
1865-0929 ssions. The papers address issues such as: mining social media and applications; natural language processing; data mining; information retrieval; emergent social media processing problems.978-981-10-2992-9978-981-10-2993-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
板凳
發(fā)表于 2025-3-22 02:18:47 | 只看該作者
Conference proceedings 2016, in October 2016..The 24 revised full papers presented were carefully reviewed and selected from 109 submissions. The papers address issues such as: mining social media and applications; natural language processing; data mining; information retrieval; emergent social media processing problems.
地板
發(fā)表于 2025-3-22 08:08:33 | 只看該作者
5#
發(fā)表于 2025-3-22 08:45:15 | 只看該作者
A Novel Approach for Relation Extraction with Few Labeled Data,can be directly applied to classify mentions of newly defined relation without labeling new training data. Experimental results demonstrate that our approach achieves competitive performance and can be incorporated with existing approaches to boost performance.
6#
發(fā)表于 2025-3-22 15:06:47 | 只看該作者
Query Intent Detection Based on Clustering of Phrase Embedding,tected as query intents. Experimental results, based on the NTCIR-12 IMine-2 corpus, show that query intent generation model via phrase embedding significantly outperforms the state-of-art clustering algorithms in query intent detection.
7#
發(fā)表于 2025-3-22 20:02:51 | 只看該作者
Individual Friends Recommendation Based on Random Walk with Restart in Social Networks,erimental results show that the performance of friend recommendation outperforms the existing methods, and the proposed algorithm is effective and efficient in terms of PV Value, UV Value and Conversion Rate.
8#
發(fā)表于 2025-3-22 22:16:24 | 只看該作者
Extracting Opinion Expression with Neural Attention,model on this task. Visualization of some examples show that our model can make use of correlation of words in the sentences and emphasize the crucial parts for this task to improve the performance compared with the vanilla RNNs.
9#
發(fā)表于 2025-3-23 03:51:48 | 只看該作者
Topic Model Based Adaptation Data Selection for Domain-Specific Machine Translation, from the general-domain. Experiments on an end-to-end domain-specific MT task show that our method outperforms the state of the art, yielding at least 1.5 BLEU points at different scales of training data.
10#
發(fā)表于 2025-3-23 09:37:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 21:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
阿拉善左旗| 盐亭县| 厦门市| 隆林| 改则县| 江西省| 渝中区| 互助| 平和县| 页游| 贵溪市| 桃园市| 祁门县| 会泽县| 鄂伦春自治旗| 新邵县| 大城县| 雷山县| 河西区| 宾阳县| 彭阳县| 土默特左旗| 镇江市| 天全县| 呈贡县| 乡城县| 疏附县| 沙湾县| 察雅县| 斗六市| 股票| 鄂托克旗| 鄂温| 丹凤县| 佳木斯市| 缙云县| 民权县| 永丰县| 青川县| 海门市| 镇赉县|