找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Smart Cities: Big Data Prediction Methods and Applications; Hui Liu Book 2020 Springer Nature Singapore Pte Ltd. 2020 Smart Cities.Big Dat

[復制鏈接]
樓主: 指責
11#
發(fā)表于 2025-3-23 13:24:10 | 只看該作者
Characteristics and Analysis of Urban Traffic Flow in Smart Traffic Systemsto solve traffic congestion. The problem studied in this chapter is to establish a vehicle trajectory prediction model based on vehicle historical trajectory data. The research idea is to use machine learning algorithms and neural network algorithms to predict future trajectories after pre-processin
12#
發(fā)表于 2025-3-23 17:40:06 | 只看該作者
13#
發(fā)表于 2025-3-23 19:22:18 | 只看該作者
Prediction Models of Traffic Flow Driven Based on Multi-Dimensional Data in Smart Traffic Systemsjacent road sections will affect the future traffic flow of the target road section. Therefore, this chapter uses the traffic changes of adjacent road sections and the traffic changes of the target road sections to build multi-dimensional datasets. Based on different model frameworks, four traffic f
14#
發(fā)表于 2025-3-23 22:49:44 | 只看該作者
15#
發(fā)表于 2025-3-24 05:52:42 | 只看該作者
Prediction Models of Urban Hydrological Status in Smart Environmenthe intelligent embodiment of the intelligent city. In addition to paying attention to its fluctuation state, the river water level is also very important for the accurate prediction of water level height in the future. For this reason, this chapter first constructs the prediction model of water leve
16#
發(fā)表于 2025-3-24 08:58:05 | 只看該作者
17#
發(fā)表于 2025-3-24 13:46:01 | 只看該作者
18#
發(fā)表于 2025-3-24 15:16:41 | 只看該作者
Prediction Models of Energy Consumption in Smart Urban Buildingsaset in the simulation results of DeST software, and an intelligent prediction method for energy consumption of a building in Changsha is proposed. Similarly, the big data computing framework is constructed according to the proposed prediction model to provide support for the design and operation of intelligent buildings in smart cities.
19#
發(fā)表于 2025-3-24 22:20:10 | 只看該作者
20#
發(fā)表于 2025-3-25 00:47:35 | 只看該作者
Book 2020t big data predicting techniques...?This timely book discusses big data forecasting for smart cities. It introduces big data forecasting techniques for the key aspects (e.g., traffic, environment, building energy, green grid, etc.) of smart cities, and explores three key areas that can be improved u
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-29 14:20
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
安乡县| 安吉县| 同仁县| 新绛县| 斗六市| 莫力| 衡东县| 澜沧| 岳普湖县| 克什克腾旗| 河曲县| 瑞昌市| 长岛县| 太仓市| 藁城市| 新巴尔虎右旗| 吴桥县| 贡觉县| 西乌| 丹东市| 黄石市| 七台河市| 阿尔山市| 内丘县| 凯里市| 四子王旗| 南乐县| 昆山市| 陆河县| 化德县| 普格县| 山东| 尚义县| 灯塔市| 湖州市| 当阳市| 广东省| 峨边| 新兴县| 天峨县| 绥宁县|