找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Smart Cities: Big Data Prediction Methods and Applications; Hui Liu Book 2020 Springer Nature Singapore Pte Ltd. 2020 Smart Cities.Big Dat

[復制鏈接]
查看: 21602|回復: 45
樓主
發(fā)表于 2025-3-21 17:00:17 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Smart Cities: Big Data Prediction Methods and Applications
編輯Hui Liu
視頻videohttp://file.papertrans.cn/869/868665/868665.mp4
概述Broadens readers‘ understanding of the smart cities.Describes in detail the latest theories and specific applications of smart time series prediction methods in smart cities, as well as a big data fra
圖書封面Titlebook: Smart Cities: Big Data Prediction Methods and Applications;  Hui Liu Book 2020 Springer Nature Singapore Pte Ltd. 2020 Smart Cities.Big Dat
描述.Smart Cities: Big Data Prediction Methods and Applications. is the first reference to provide a comprehensive overview of smart cities with the latest big data predicting techniques...?This timely book discusses big data forecasting for smart cities. It introduces big data forecasting techniques for the key aspects (e.g., traffic, environment, building energy, green grid, etc.) of smart cities, and explores three key areas that can be improved using big data prediction: grid energy, road traffic networks and environmental health in smart cities. The big data prediction methods proposed in this book are highly significant in terms of the planning, construction, management, control and development of green and smart cities...?Including numerous case studies to explain each method and model, this easy-to-understand book appeals to scientists, engineers, college students, postgraduates, teachers and managers from various fields of artificial intelligence, smart cities, smart grid, intelligent traffic systems, intelligent environments and big data computing..
出版日期Book 2020
關鍵詞Smart Cities; Big Data; Data Prediction; Smart Grid; Smart Traffic System; Smart Environments
版次1
doihttps://doi.org/10.1007/978-981-15-2837-8
isbn_softcover978-981-15-2839-2
isbn_ebook978-981-15-2837-8
copyrightSpringer Nature Singapore Pte Ltd. 2020
The information of publication is updating

書目名稱Smart Cities: Big Data Prediction Methods and Applications影響因子(影響力)




書目名稱Smart Cities: Big Data Prediction Methods and Applications影響因子(影響力)學科排名




書目名稱Smart Cities: Big Data Prediction Methods and Applications網(wǎng)絡公開度




書目名稱Smart Cities: Big Data Prediction Methods and Applications網(wǎng)絡公開度學科排名




書目名稱Smart Cities: Big Data Prediction Methods and Applications被引頻次




書目名稱Smart Cities: Big Data Prediction Methods and Applications被引頻次學科排名




書目名稱Smart Cities: Big Data Prediction Methods and Applications年度引用




書目名稱Smart Cities: Big Data Prediction Methods and Applications年度引用學科排名




書目名稱Smart Cities: Big Data Prediction Methods and Applications讀者反饋




書目名稱Smart Cities: Big Data Prediction Methods and Applications讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:56:33 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:54:39 | 只看該作者
地板
發(fā)表于 2025-3-22 06:26:59 | 只看該作者
5#
發(fā)表于 2025-3-22 09:06:18 | 只看該作者
Prediction Models of Traffic Flow Driven Based on Multi-Dimensional Data in Smart Traffic Systems the traffic flow prediction performance of the WPD-Elman model using multi-dimensional data is the best. When building a traffic flow prediction model, the wavelet packet algorithm can effectively improve the accuracy of the model.
6#
發(fā)表于 2025-3-22 15:03:00 | 只看該作者
Prediction Model of Urban Environmental Noise in Smart Environment, traffic noise, and neighborhood noise. Through comprehensive comparative analysis of the experimental results, it can be concluded that the noise prediction performance of the BFGS model is the best in this experiment. Neighborhood noise is the most predictable among the three types of noise data.
7#
發(fā)表于 2025-3-22 18:26:17 | 只看該作者
Key Issues of Smart Cities be the future direction of the development of cities. This chapter is the general chapter of the book. In the chapter, the big data forecasting technology is used as the basic point to elaborate and analyze from the aspects of smart grid and buildings, smart traffic, and smart environment. In each
8#
發(fā)表于 2025-3-22 22:48:10 | 只看該作者
Electrical Characteristics and Correlation Analysis in Smart Grid kinds of data is also very complex. How to extract effective data sources from massive data, simplify the identification process, and effectively improve the accuracy of data processing is a necessary way to realize power grid intelligence. In this chapter, taking the air-conditioning circuit syste
9#
發(fā)表于 2025-3-23 04:28:23 | 只看該作者
10#
發(fā)表于 2025-3-23 08:44:52 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 14:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
东阿县| 金阳县| 博野县| 珠海市| 从江县| 乡城县| 崇左市| 会理县| 客服| 北辰区| 乐陵市| 克拉玛依市| 青海省| 疏附县| 安徽省| 改则县| 聊城市| 绍兴市| 南宫市| 大洼县| 柳江县| 洞口县| 兴仁县| 大宁县| 武夷山市| 塔河县| 天津市| 布拖县| 清镇市| 枣庄市| 丰镇市| 通河县| 武汉市| 永丰县| 陇南市| 宝坻区| 久治县| 贵州省| 珲春市| 天全县| 通山县|