找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Smart Cities: Big Data Prediction Methods and Applications; Hui Liu Book 2020 Springer Nature Singapore Pte Ltd. 2020 Smart Cities.Big Dat

[復(fù)制鏈接]
樓主: 指責(zé)
11#
發(fā)表于 2025-3-23 13:24:10 | 只看該作者
Characteristics and Analysis of Urban Traffic Flow in Smart Traffic Systemsto solve traffic congestion. The problem studied in this chapter is to establish a vehicle trajectory prediction model based on vehicle historical trajectory data. The research idea is to use machine learning algorithms and neural network algorithms to predict future trajectories after pre-processin
12#
發(fā)表于 2025-3-23 17:40:06 | 只看該作者
13#
發(fā)表于 2025-3-23 19:22:18 | 只看該作者
Prediction Models of Traffic Flow Driven Based on Multi-Dimensional Data in Smart Traffic Systemsjacent road sections will affect the future traffic flow of the target road section. Therefore, this chapter uses the traffic changes of adjacent road sections and the traffic changes of the target road sections to build multi-dimensional datasets. Based on different model frameworks, four traffic f
14#
發(fā)表于 2025-3-23 22:49:44 | 只看該作者
15#
發(fā)表于 2025-3-24 05:52:42 | 只看該作者
Prediction Models of Urban Hydrological Status in Smart Environmenthe intelligent embodiment of the intelligent city. In addition to paying attention to its fluctuation state, the river water level is also very important for the accurate prediction of water level height in the future. For this reason, this chapter first constructs the prediction model of water leve
16#
發(fā)表于 2025-3-24 08:58:05 | 只看該作者
17#
發(fā)表于 2025-3-24 13:46:01 | 只看該作者
18#
發(fā)表于 2025-3-24 15:16:41 | 只看該作者
Prediction Models of Energy Consumption in Smart Urban Buildingsaset in the simulation results of DeST software, and an intelligent prediction method for energy consumption of a building in Changsha is proposed. Similarly, the big data computing framework is constructed according to the proposed prediction model to provide support for the design and operation of intelligent buildings in smart cities.
19#
發(fā)表于 2025-3-24 22:20:10 | 只看該作者
20#
發(fā)表于 2025-3-25 00:47:35 | 只看該作者
Book 2020t big data predicting techniques...?This timely book discusses big data forecasting for smart cities. It introduces big data forecasting techniques for the key aspects (e.g., traffic, environment, building energy, green grid, etc.) of smart cities, and explores three key areas that can be improved u
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 19:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇安县| 合阳县| 德化县| 邵武市| 正定县| 永吉县| 灵山县| 吉木萨尔县| 惠来县| 益阳市| 吴忠市| 东港市| 唐山市| 临澧县| 白山市| 绿春县| 阳信县| 扬中市| 绥芬河市| 临桂县| 集贤县| 盖州市| 潼关县| 湘潭县| 南皮县| 西乌| 太康县| 金塔县| 上饶市| 公主岭市| 天津市| 芜湖市| 大关县| 永修县| 夏河县| 徐汇区| 海原县| 兴安盟| 沁源县| 抚顺市| 潍坊市|