找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rings of Quotients; An Introduction to M Bo Stenstr?m Book 1975 Springer-Verlag Berlin Heidelberg 1975 Adjoint functor.Coproduct.Prime.Quot

[復(fù)制鏈接]
樓主: Enclosure
11#
發(fā)表于 2025-3-23 11:39:07 | 只看該作者
Perfect Localizations, §1), which in many important cases actually is a natural equivalence (e.g. for rings of fractions). In these cases, . must be an exact functor and thus . is flat as a left .-module. But there are several other nice properties of rings of fractions which also extend to these cases. One such property
12#
發(fā)表于 2025-3-23 17:02:17 | 只看該作者
The Maximal Ring of Quotients of a Non-Singular Ring, and .-(., .) consists of the non-singular injective .-modules. It follows from Prop. X.1.7 that every object in the category .-(., .) is injective. Thus .-(., .) is a spectral category. In view of this observation, it is natural to begin this chapter with a study of the properties of spectral categ
13#
發(fā)表于 2025-3-23 18:53:19 | 只看該作者
,Finiteness Conditions on ,-(,, ?), reflected by properties of the ring .. The lattice of subobjects of . in the category .-(., ?) is isomorphic to the lattice Sat.(.) of ?-saturated submodules of ., and the finiteness properties may therefore be formulated for the lattices of ?-saturated submodules.
14#
發(fā)表于 2025-3-24 00:59:01 | 只看該作者
Self-Injective Rings,ase when the maximal ring of quotients is a self-injective ring, a case which will be studied in this Chapter. For this we need to examine the properties of self-injective rings in some detail, and we devote the first three sections to that purpose.
15#
發(fā)表于 2025-3-24 05:00:31 | 只看該作者
16#
發(fā)表于 2025-3-24 07:57:07 | 只看該作者
17#
發(fā)表于 2025-3-24 11:49:23 | 只看該作者
18#
發(fā)表于 2025-3-24 17:41:02 | 只看該作者
Simple Torsion Theories,dempotents. This chapter is devoted to the development of these methods and to their applications to torsion theory, as well as to an account of the basic theory of rings with various minimum conditions.
19#
發(fā)表于 2025-3-24 21:02:11 | 只看該作者
20#
發(fā)表于 2025-3-25 00:23:29 | 只看該作者
Torsion Theory,en to each torsion theory we associate a ring of quotients. This chapter is devoted to a comprehensive study of the general aspects of torsion. The basic result will be that the particular notion of torsion, used in the theory of rings of quotients, can be desribed in three equivalent ways (Gabriel [2], Maranda [1]):
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固始县| 宜兰市| 高邑县| 新兴县| 西安市| 罗田县| 屯留县| 新营市| 黔江区| 广德县| 武宁县| 嵩明县| 崇礼县| 江门市| 汾西县| 博乐市| 澄江县| 望都县| 肥乡县| 随州市| 五家渠市| 旬邑县| 郎溪县| 广饶县| 蓝田县| 子长县| 和政县| 含山县| 定安县| 通许县| 襄城县| 岳阳市| 忻城县| 府谷县| 阿克陶县| 正镶白旗| 巩义市| 抚州市| 宁阳县| 衢州市| 宜春市|