找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Functions; Komaravolu Chandrasekharan Textbook 1985 Springer-Verlag Berlin Heidelberg 1985 Complex analysis.Functions.Meromorphic

[復(fù)制鏈接]
樓主: OBESE
11#
發(fā)表于 2025-3-23 11:18:12 | 只看該作者
Exakte und numerische Rechnungen,, meromorphic function of., with.as a pair of basic periods, with two simple poles in each period-parallelogram, the sum of the residues at those poles being zero. It satisfies the differential equation., where..
12#
發(fā)表于 2025-3-23 14:14:57 | 只看該作者
13#
發(fā)表于 2025-3-23 20:03:28 | 只看該作者
,Selbstverst?ndnis der Mathematik,to the fourth power of the theta-function .(0, z), which is defined by the . ., by the formula . (cf. (2.1), Ch. X) which enabled us to determine .(.) in terms of the divisors of .We now consider the more general problem of finding the number of representations of a positive interger by a positive-d
14#
發(fā)表于 2025-3-24 01:29:23 | 只看該作者
Fünf Wolken werden durchgestrichenon. It is of advantage therefore to introduce another function, denoted by .(., τ), which has a rapidly convergent expansion in infinite series, and which is directly connected with the .-function of Weierstrass.
15#
發(fā)表于 2025-3-24 03:14:49 | 只看該作者
16#
發(fā)表于 2025-3-24 07:25:08 | 只看該作者
The theta-functions,on. It is of advantage therefore to introduce another function, denoted by .(., τ), which has a rapidly convergent expansion in infinite series, and which is directly connected with the .-function of Weierstrass.
17#
發(fā)表于 2025-3-24 11:32:57 | 只看該作者
18#
發(fā)表于 2025-3-24 16:39:28 | 只看該作者
978-3-642-52246-8Springer-Verlag Berlin Heidelberg 1985
19#
發(fā)表于 2025-3-24 20:19:40 | 只看該作者
20#
發(fā)表于 2025-3-25 01:27:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 09:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
达州市| 九江县| 都昌县| 平泉县| 巴楚县| 昌吉市| 许昌市| 通江县| 岑巩县| 遂溪县| 项城市| 翁牛特旗| 黎平县| 虹口区| 化隆| 彭州市| 沈丘县| 吉水县| 隆尧县| 南部县| 海口市| 黄浦区| 嘉峪关市| 麻城市| 锦州市| 勐海县| 曲阜市| 通榆县| 汶川县| 遂川县| 竹溪县| 昭苏县| 万年县| 莎车县| 武邑县| 民县| 伊通| 偃师市| 察哈| 舞钢市| 大姚县|