找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Functions; Komaravolu Chandrasekharan Textbook 1985 Springer-Verlag Berlin Heidelberg 1985 Complex analysis.Functions.Meromorphic

[復(fù)制鏈接]
樓主: OBESE
21#
發(fā)表于 2025-3-25 06:29:38 | 只看該作者
22#
發(fā)表于 2025-3-25 09:12:00 | 只看該作者
23#
發(fā)表于 2025-3-25 12:19:06 | 只看該作者
24#
發(fā)表于 2025-3-25 16:27:30 | 只看該作者
25#
發(fā)表于 2025-3-25 21:37:19 | 只看該作者
Periods of meromorphic functions,We assume as known the fundamentals of complex analysis, including the basic properties of . and of . functions in the . The meromorphic functions defined on an ., set in the complex plane form a . Unless otherwise qualified, a meromorphic function is supposed to mean a function meromorphic in the whole complex plane.
26#
發(fā)表于 2025-3-26 00:49:55 | 只看該作者
General properties of elliptic functions,Given an elliptic function ., let (. .) be a pair of . periods for its period-lattice {. .}, where m, . = 0, ±1, ±2,....
27#
發(fā)表于 2025-3-26 04:52:48 | 只看該作者
The zeta-function and the sigma-function of Weierstrass,Weierstrass’s ζ-function is a meromorphic function, which has . poles, with residues equal to one, at all points which correspond to the periods of Weierstrass’s ?-function. It is . elliptic. But every elliptic function can be expressed in terms of ζ and its derivatives; in fact ζ.(.)= -?(.).
28#
發(fā)表于 2025-3-26 10:11:35 | 只看該作者
29#
發(fā)表于 2025-3-26 15:45:57 | 只看該作者
The law of quadratic reciprocity,As a limiting case of the transformation formula connecting the theta-function .(., .) with ., we shall prove a transformation formula for exponential sums (Theorem 1), which yields, as a special case, a reciprocity formula for . (Corollary 2) which, in turn, enables us not only to evaluate . but to prove the law of quadratic reciprocity.
30#
發(fā)表于 2025-3-26 17:27:55 | 只看該作者
,Dedekind’s η-function and Euler’s theorem on pentagonal numbers,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 12:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
年辖:市辖区| 镇坪县| 宁都县| 周口市| 文登市| 芦山县| 西充县| 临潭县| 阳山县| 平江县| 铜鼓县| 萨迦县| 连云港市| 云阳县| 丰台区| 涟水县| 鹤壁市| 吴川市| 张家界市| 华亭县| 兴国县| 莒南县| 剑川县| 沭阳县| 临朐县| 潮安县| 馆陶县| 营山县| 西盟| 应城市| 瑞金市| 育儿| 阳东县| 鹤壁市| 阿巴嘎旗| 宣恩县| 兰州市| 深泽县| 沧州市| 安远县| 三河市|