找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representations of SU(2,1) in Fourier Term Modules; Roelof W. Bruggeman,Roberto J. Miatello Book 2023 The Editor(s) (if applicable) and Th

[復制鏈接]
樓主: gingerly
11#
發(fā)表于 2025-3-23 11:45:38 | 只看該作者
12#
發(fā)表于 2025-3-23 17:12:33 | 只看該作者
Introduction,book. We summarize the main results on Fourier term modules in four theorems. We give an overview of applications to automorphic forms, considering also automorphic forms with moderate exponential growth.
13#
發(fā)表于 2025-3-23 20:54:32 | 只看該作者
The Lie Group SU(2,1) and Subgroups,aratory chapter, we fix a standard realization . of ., and consider the representation theory of the maximal unipotent subgroup . and of the maximal compact subgroup . in an Iwasawa decomposition .. We need to understand the realizations of irreducible representations of . and of . in spaces of func
14#
發(fā)表于 2025-3-23 23:08:30 | 只看該作者
15#
發(fā)表于 2025-3-24 04:41:19 | 只看該作者
16#
發(fā)表于 2025-3-24 10:31:25 | 只看該作者
Application to Automorphic Forms,rms are required to have at most polynomial growth at the cusps. Here we also define automorphic forms with moderate exponential growth. A growth condition on the modular form implies properties of the Fourier expansion. For ., an automorphic form with Fourier terms that have polynomial growth has p
17#
發(fā)表于 2025-3-24 13:07:32 | 只看該作者
Book 2023oup with a non-abelian unipotent subgroup. It considers the “abelian” Fourier term modules connected to characters of the maximal unipotent subgroups of SU(2,1), and also the “non-abelian” modules, described via theta functions. A complete description of the submodule structure of all Fourier term m
18#
發(fā)表于 2025-3-24 14:51:01 | 只看該作者
19#
發(fā)表于 2025-3-24 20:22:13 | 只看該作者
20#
發(fā)表于 2025-3-25 02:56:34 | 只看該作者
Application to Automorphic Forms,ition on the modular form implies properties of the Fourier expansion. For ., an automorphic form with Fourier terms that have polynomial growth has polynomial growth itself. For . this does not necessarily hold..We consider also the Fourier expansion of families of automorphic forms, and of generating vectors of irreducible automorphic modules.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-31 09:09
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
永丰县| 屏东市| 庄浪县| 千阳县| 高青县| 克什克腾旗| 陆良县| 武陟县| 仙居县| 河北区| 双桥区| 达孜县| 合作市| 清丰县| 且末县| 天台县| 巴林右旗| 凤山县| 宁城县| 重庆市| 赤水市| 奉化市| 甘洛县| 承德市| 乌鲁木齐市| 安岳县| 清远市| 黎川县| 乐东| 尉氏县| 石阡县| 青河县| 牡丹江市| 湖南省| 五华县| 长丰县| 澳门| 灵武市| 广饶县| 永兴县| 大关县|