找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representations of SU(2,1) in Fourier Term Modules; Roelof W. Bruggeman,Roberto J. Miatello Book 2023 The Editor(s) (if applicable) and Th

[復(fù)制鏈接]
查看: 24527|回復(fù): 36
樓主
發(fā)表于 2025-3-21 18:25:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Representations of SU(2,1) in Fourier Term Modules
編輯Roelof W. Bruggeman,Roberto J. Miatello
視頻videohttp://file.papertrans.cn/828/827499/827499.mp4
概述Describes the structure of Fourier term modules.Gives complete Fourier-Jacobi expansions for SU(2,1).Provides computations in the Mathematica notebook
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Representations of SU(2,1) in Fourier Term Modules;  Roelof W. Bruggeman,Roberto J. Miatello Book 2023 The Editor(s) (if applicable) and Th
描述This book studies the modules arising in Fourier expansions of automorphic forms, namely Fourier term modules on SU(2,1), the smallest rank one Lie group with a non-abelian unipotent subgroup. It considers the “abelian” Fourier term modules connected to characters of the maximal unipotent subgroups of SU(2,1), and also the “non-abelian” modules, described via theta functions. A complete description of the submodule structure of all Fourier term modules is given, with a discussion of the consequences for Fourier expansions of automorphic forms, automorphic forms with exponential growth included..These results can be ?applied to prove a completeness result for Poincaré series in spaces of square integrable automorphic forms..Aimed at researchers and graduate students interested in automorphic forms, harmonic analysis on Lie groups, and number-theoretic topics related to Poincaré series, the book will also serve as a basic reference on spectral expansion with Fourier-Jacobi coefficients. Only a background in Lie groups and their representations is assumed..
出版日期Book 2023
關(guān)鍵詞Fourier Tem Modules; SU(2,1); Automorphic Form; Fourier-Jacobi Series; Unitary Group SU(2,1),; Non-Abelia
版次1
doihttps://doi.org/10.1007/978-3-031-43192-0
isbn_softcover978-3-031-43191-3
isbn_ebook978-3-031-43192-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Representations of SU(2,1) in Fourier Term Modules影響因子(影響力)




書目名稱Representations of SU(2,1) in Fourier Term Modules影響因子(影響力)學(xué)科排名




書目名稱Representations of SU(2,1) in Fourier Term Modules網(wǎng)絡(luò)公開度




書目名稱Representations of SU(2,1) in Fourier Term Modules網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Representations of SU(2,1) in Fourier Term Modules被引頻次




書目名稱Representations of SU(2,1) in Fourier Term Modules被引頻次學(xué)科排名




書目名稱Representations of SU(2,1) in Fourier Term Modules年度引用




書目名稱Representations of SU(2,1) in Fourier Term Modules年度引用學(xué)科排名




書目名稱Representations of SU(2,1) in Fourier Term Modules讀者反饋




書目名稱Representations of SU(2,1) in Fourier Term Modules讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:54:03 | 只看該作者
Representations of SU(2,1) in Fourier Term Modules
板凳
發(fā)表于 2025-3-22 02:01:25 | 只看該作者
地板
發(fā)表于 2025-3-22 04:35:28 | 只看該作者
978-3-031-43191-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
5#
發(fā)表于 2025-3-22 10:21:35 | 只看該作者
6#
發(fā)表于 2025-3-22 15:09:27 | 只看該作者
7#
發(fā)表于 2025-3-22 18:08:20 | 只看該作者
8#
發(fā)表于 2025-3-22 21:37:24 | 只看該作者
Roelof W. Bruggeman,Roberto J. MiatelloDescribes the structure of Fourier term modules.Gives complete Fourier-Jacobi expansions for SU(2,1).Provides computations in the Mathematica notebook
9#
發(fā)表于 2025-3-23 01:29:25 | 只看該作者
Introduction,book. We summarize the main results on Fourier term modules in four theorems. We give an overview of applications to automorphic forms, considering also automorphic forms with moderate exponential growth.
10#
發(fā)表于 2025-3-23 09:03:01 | 只看該作者
The Lie Group SU(2,1) and Subgroups,aratory chapter, we fix a standard realization . of ., and consider the representation theory of the maximal unipotent subgroup . and of the maximal compact subgroup . in an Iwasawa decomposition .. We need to understand the realizations of irreducible representations of . and of . in spaces of functions on . and ., respectively.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 15:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东乌| 平顶山市| 宜宾县| 丹东市| 新干县| 通州区| 普宁市| 鹤岗市| 关岭| 松溪县| 榆林市| 菏泽市| 甘德县| 新河县| 清河县| 宁乡县| 宜兰市| 阿拉善左旗| 双鸭山市| 婺源县| 天台县| 高碑店市| 邻水| 木里| 高清| 长宁县| 雷波县| 开原市| 清苑县| 玉山县| 青阳县| 驻马店市| 咸阳市| 广南县| 惠安县| 太谷县| 遂川县| 九台市| 武陟县| 辽阳市| 阜新|