找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity Theory for Mean-Field Game Systems; Diogo A. Gomes,Edgard A. Pimentel,Vardan Voskanyan Book 2016 Springer International Publish

[復(fù)制鏈接]
樓主: graphic
11#
發(fā)表于 2025-3-23 11:10:38 | 只看該作者
12#
發(fā)表于 2025-3-23 17:30:14 | 只看該作者
A Priori Bounds for Stationary Models,entity, that .?>?0. Finally, we examine an MFG with a logarithmic nonlinearity. This model presents substantial challenges since the logarithm is not bounded from below. However, a clever integration by parts argument gives the necessary bounds for its study.
13#
發(fā)表于 2025-3-23 19:15:15 | 只看該作者
14#
發(fā)表于 2025-3-24 00:19:48 | 只看該作者
15#
發(fā)表于 2025-3-24 04:33:22 | 只看該作者
A Priori Bounds for Stationary Models,es given in Theorem?3.11, to obtain Sobolev estimates for the value function. Next, we consider a congestion problem and show, through a remarkable identity, that .?>?0. Finally, we examine an MFG with a logarithmic nonlinearity. This model presents substantial challenges since the logarithm is not
16#
發(fā)表于 2025-3-24 07:02:37 | 只看該作者
A Priori Bounds for Time-Dependent Models,dratic case; for .?=?2 the quadratic case. In the first instance, the non-linearity?|?.?|?. acts as a perturbation of the heat equation and the main regularity tool is the Gagliardo–Nirenberg inequality. In the second instance, the Hopf–Cole transformation gives an explicit way to study (8.1). Howev
17#
發(fā)表于 2025-3-24 12:38:13 | 只看該作者
18#
發(fā)表于 2025-3-24 14:53:46 | 只看該作者
Local Mean-Field Games: Existence,he previous estimates. Thanks to this technique, we show that solutions of stationary MFGs are bounded a priori in all Sobolev spaces. This is an essential step for the two existence methods developed next. The first method is a regularization procedure in which we perturb the original local MFG int
19#
發(fā)表于 2025-3-24 22:40:23 | 只看該作者
20#
發(fā)表于 2025-3-25 03:13:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 04:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
锦屏县| 忻城县| 湖口县| 墨竹工卡县| 玛多县| 兴安盟| 晋州市| 金川县| 岳阳县| 磐石市| 潞西市| 定南县| 元氏县| 柳江县| 正镶白旗| 藁城市| 沐川县| 阿坝| 永春县| 元阳县| 饶河县| 重庆市| 永丰县| 石阡县| 松江区| 南部县| 南投县| 东乌珠穆沁旗| 建瓯市| 黔西县| 碌曲县| 张家口市| 衡东县| 双牌县| 南江县| 仲巴县| 庆城县| 正定县| 澎湖县| 娄烦县| 纳雍县|