找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity Theory for Mean-Field Game Systems; Diogo A. Gomes,Edgard A. Pimentel,Vardan Voskanyan Book 2016 Springer International Publish

[復(fù)制鏈接]
查看: 52449|回復(fù): 46
樓主
發(fā)表于 2025-3-21 20:03:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Regularity Theory for Mean-Field Game Systems
編輯Diogo A. Gomes,Edgard A. Pimentel,Vardan Voskanyan
視頻videohttp://file.papertrans.cn/826/825556/825556.mp4
概述Details key elements of the regularity theory for mean-field games.Presents a series of techniques for well-posedness.Explores stationary and time-dependent MFGs through a series of a-priori estimates
叢書(shū)名稱(chēng)SpringerBriefs in Mathematics
圖書(shū)封面Titlebook: Regularity Theory for Mean-Field Game Systems;  Diogo A. Gomes,Edgard A. Pimentel,Vardan Voskanyan Book 2016 Springer International Publish
描述Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
出版日期Book 2016
關(guān)鍵詞Fokker-Planck equation; Hamilton-Jacobi equation; Lax-Hopf estimates; Logarithmic non-linearities; mean-
版次1
doihttps://doi.org/10.1007/978-3-319-38934-9
isbn_softcover978-3-319-38932-5
isbn_ebook978-3-319-38934-9Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書(shū)目名稱(chēng)Regularity Theory for Mean-Field Game Systems影響因子(影響力)




書(shū)目名稱(chēng)Regularity Theory for Mean-Field Game Systems影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Regularity Theory for Mean-Field Game Systems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Regularity Theory for Mean-Field Game Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Regularity Theory for Mean-Field Game Systems被引頻次




書(shū)目名稱(chēng)Regularity Theory for Mean-Field Game Systems被引頻次學(xué)科排名




書(shū)目名稱(chēng)Regularity Theory for Mean-Field Game Systems年度引用




書(shū)目名稱(chēng)Regularity Theory for Mean-Field Game Systems年度引用學(xué)科排名




書(shū)目名稱(chēng)Regularity Theory for Mean-Field Game Systems讀者反饋




書(shū)目名稱(chēng)Regularity Theory for Mean-Field Game Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:31:52 | 只看該作者
https://doi.org/10.1007/978-3-319-38934-9Fokker-Planck equation; Hamilton-Jacobi equation; Lax-Hopf estimates; Logarithmic non-linearities; mean-
板凳
發(fā)表于 2025-3-22 04:13:38 | 只看該作者
地板
發(fā)表于 2025-3-22 06:06:26 | 只看該作者
5#
發(fā)表于 2025-3-22 09:35:27 | 只看該作者
6#
發(fā)表于 2025-3-22 15:27:28 | 只看該作者
Explicit Solutions, Special Transformations, and Further Examples,Few mean-field games can be solved explicitly. However, examples for which closed solutions are known illustrate essential features of the theory.
7#
發(fā)表于 2025-3-22 18:40:37 | 只看該作者
,Estimates for the Hamilton–Jacobi Equation,In this chapter, we examine a priori estimates for solutions of Hamilton–Jacobi equations.
8#
發(fā)表于 2025-3-22 22:27:27 | 只看該作者
,Estimates for the Transport and Fokker–Planck Equations,In this chapter, we turn our attention to the second equation in the MFG system, the transport equation, . or the Fokker–Planck equation, . where . is a smooth vector field. Both (.) and (.) are equipped with the initial condition
9#
發(fā)表于 2025-3-23 04:39:00 | 只看該作者
10#
發(fā)表于 2025-3-23 09:30:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 09:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南溪县| 芜湖市| 永丰县| 吉木萨尔县| 犍为县| 新密市| 永昌县| 噶尔县| 马鞍山市| 九江县| 淮安市| 邵阳县| 台中市| 马鞍山市| 古蔺县| 玉山县| 西畴县| 荥阳市| 红安县| 石阡县| 延庆县| 岳阳市| 绥阳县| 滁州市| 宜丰县| 苍山县| 西充县| 宜城市| 诏安县| 阜南县| 额尔古纳市| 潼南县| 永兴县| 福安市| 杭锦后旗| 二连浩特市| 苏州市| 长治县| 英吉沙县| 武乡县| 淮阳县|