找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity Theory for Mean-Field Game Systems; Diogo A. Gomes,Edgard A. Pimentel,Vardan Voskanyan Book 2016 Springer International Publish

[復(fù)制鏈接]
樓主: graphic
11#
發(fā)表于 2025-3-23 11:10:38 | 只看該作者
12#
發(fā)表于 2025-3-23 17:30:14 | 只看該作者
A Priori Bounds for Stationary Models,entity, that .?>?0. Finally, we examine an MFG with a logarithmic nonlinearity. This model presents substantial challenges since the logarithm is not bounded from below. However, a clever integration by parts argument gives the necessary bounds for its study.
13#
發(fā)表于 2025-3-23 19:15:15 | 只看該作者
14#
發(fā)表于 2025-3-24 00:19:48 | 只看該作者
15#
發(fā)表于 2025-3-24 04:33:22 | 只看該作者
A Priori Bounds for Stationary Models,es given in Theorem?3.11, to obtain Sobolev estimates for the value function. Next, we consider a congestion problem and show, through a remarkable identity, that .?>?0. Finally, we examine an MFG with a logarithmic nonlinearity. This model presents substantial challenges since the logarithm is not
16#
發(fā)表于 2025-3-24 07:02:37 | 只看該作者
A Priori Bounds for Time-Dependent Models,dratic case; for .?=?2 the quadratic case. In the first instance, the non-linearity?|?.?|?. acts as a perturbation of the heat equation and the main regularity tool is the Gagliardo–Nirenberg inequality. In the second instance, the Hopf–Cole transformation gives an explicit way to study (8.1). Howev
17#
發(fā)表于 2025-3-24 12:38:13 | 只看該作者
18#
發(fā)表于 2025-3-24 14:53:46 | 只看該作者
Local Mean-Field Games: Existence,he previous estimates. Thanks to this technique, we show that solutions of stationary MFGs are bounded a priori in all Sobolev spaces. This is an essential step for the two existence methods developed next. The first method is a regularization procedure in which we perturb the original local MFG int
19#
發(fā)表于 2025-3-24 22:40:23 | 只看該作者
20#
發(fā)表于 2025-3-25 03:13:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 09:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
瑞昌市| 新野县| 达尔| 泰安市| 邮箱| 寿阳县| 炉霍县| 新宁县| 方城县| 牟定县| 渝中区| 定兴县| 滨州市| 巴南区| 台东县| 浠水县| 峨边| 娄烦县| 洛宁县| 望谟县| 西盟| 甘肃省| 顺平县| 汉阴县| 江源县| 青浦区| 建湖县| 通城县| 平顶山市| 托克逊县| 江阴市| 泰兴市| 岐山县| 云龙县| 大邑县| 南充市| 济宁市| 南京市| 改则县| 罗甸县| 安康市|