找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quasi-Periodic Motions in Families of Dynamical Systems; Order amidst Chaos Hendrik W. Broer,George B. Huitema,Mikhail B. Sevr Book 1996 Sp

[復制鏈接]
樓主: controllers
31#
發(fā)表于 2025-3-26 21:12:24 | 只看該作者
32#
發(fā)表于 2025-3-27 04:42:12 | 只看該作者
33#
發(fā)表于 2025-3-27 08:48:57 | 只看該作者
34#
發(fā)表于 2025-3-27 13:23:02 | 只看該作者
Appendices,ordinates (. = 0). We briefly discussed a further simplified situation in § 1.2.1 which concerned 2-tori and was based on circle maps. However, our proof is characteristic for all the other contexts mentioned throughout. For a similar proof in the Hamiltonian setting [the Hamiltonian isotropic (.,0,
35#
發(fā)表于 2025-3-27 15:20:10 | 只看該作者
0075-8434 nvariant torus. This phenomenon is most familiar from Hamiltonian dynamics. Hamiltonian systems are well known for their use in modelling the dynamics related to frictionless mechanics, including the planetary and lunar motions. In this context the general picture appears to be as follows. On the on
36#
發(fā)表于 2025-3-27 21:04:43 | 只看該作者
Introduction and examples,onlinear dynamical systems [67,115,158,356]. In this book we confine ourselves with finite dimensional systems. For the theory of quasi-periodic motions in infinite dimensional dynamical systems, the reader is recommended to consult, e.g., [185,186,279–281] and references therein.
37#
發(fā)表于 2025-3-28 01:05:00 | 只看該作者
38#
發(fā)表于 2025-3-28 03:30:11 | 只看該作者
The continuation theory,r manifold persists under perturbations [67,115,158,356] but becomes, generally speaking, only finitely differentiable [12,347]. However, we can apply the . of the “relaxed” Theorems 2.8, 2.9, 2.11, 2.12 to the restrictions of . and . to the center manifold, see [151, 243,277,278,306] as well as [62,162].
39#
發(fā)表于 2025-3-28 09:06:14 | 只看該作者
40#
發(fā)表于 2025-3-28 10:43:33 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 10:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
柳江县| 托克托县| 灵石县| 湖北省| 潜江市| 深州市| 阿拉善右旗| 渝北区| 兴义市| 巴林左旗| 东兴市| 长丰县| 镶黄旗| 周口市| 永登县| 夏邑县| 博湖县| 赣州市| 玉树县| 什邡市| 太仆寺旗| 长寿区| 宁波市| 韶山市| 阜城县| 淮安市| 兴城市| 南靖县| 崇阳县| 绥阳县| 阆中市| 郸城县| 黑龙江省| 新密市| 德阳市| 福安市| 江山市| 遂溪县| 大竹县| 罗山县| 泰安市|