找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quasi-Periodic Motions in Families of Dynamical Systems; Order amidst Chaos Hendrik W. Broer,George B. Huitema,Mikhail B. Sevr Book 1996 Sp

[復(fù)制鏈接]
查看: 37356|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:39:33 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Quasi-Periodic Motions in Families of Dynamical Systems
副標(biāo)題Order amidst Chaos
編輯Hendrik W. Broer,George B. Huitema,Mikhail B. Sevr
視頻videohttp://file.papertrans.cn/782/781614/781614.mp4
叢書(shū)名稱(chēng)Lecture Notes in Mathematics
圖書(shū)封面Titlebook: Quasi-Periodic Motions in Families of Dynamical Systems; Order amidst Chaos Hendrik W. Broer,George B. Huitema,Mikhail B. Sevr Book 1996 Sp
描述This book is devoted to the phenomenon of quasi-periodic motion in dynamical systems. Such a motion in the phase space densely fills up an invariant torus. This phenomenon is most familiar from Hamiltonian dynamics. Hamiltonian systems are well known for their use in modelling the dynamics related to frictionless mechanics, including the planetary and lunar motions. In this context the general picture appears to be as follows. On the one hand, Hamiltonian systems occur that are in complete order: these are the integrable systems where all motion is confined to invariant tori. On the other hand, systems exist that are entirely chaotic on each energy level. In between we know systems that, being sufficiently small perturbations of integrable ones, exhibit coexistence of order (invariant tori carrying quasi-periodic dynamics) and chaos (the so called stochastic layers). The Kolmogorov-Arnol‘d-Moser (KAM) theory on quasi-periodic motions tells us that the occurrence of such motions is open within the class of all Hamiltonian systems: in other words, it is a phenomenon persistent under small Hamiltonian perturbations. Moreover, generally, for any such system the union of quasi-periodic
出版日期Book 1996
關(guān)鍵詞Chaos; KAM-theory; analysis; dynamical systems; hamiltonian systems; reversible systems; stability; systems
版次1
doihttps://doi.org/10.1007/978-3-540-49613-7
isbn_softcover978-3-540-62025-9
isbn_ebook978-3-540-49613-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1996
The information of publication is updating

書(shū)目名稱(chēng)Quasi-Periodic Motions in Families of Dynamical Systems影響因子(影響力)




書(shū)目名稱(chēng)Quasi-Periodic Motions in Families of Dynamical Systems影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Quasi-Periodic Motions in Families of Dynamical Systems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Quasi-Periodic Motions in Families of Dynamical Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Quasi-Periodic Motions in Families of Dynamical Systems被引頻次




書(shū)目名稱(chēng)Quasi-Periodic Motions in Families of Dynamical Systems被引頻次學(xué)科排名




書(shū)目名稱(chēng)Quasi-Periodic Motions in Families of Dynamical Systems年度引用




書(shū)目名稱(chēng)Quasi-Periodic Motions in Families of Dynamical Systems年度引用學(xué)科排名




書(shū)目名稱(chēng)Quasi-Periodic Motions in Families of Dynamical Systems讀者反饋




書(shū)目名稱(chēng)Quasi-Periodic Motions in Families of Dynamical Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:10:39 | 只看該作者
Quasi-Periodic Motions in Families of Dynamical Systems978-3-540-49613-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
板凳
發(fā)表于 2025-3-22 04:08:10 | 只看該作者
地板
發(fā)表于 2025-3-22 06:54:48 | 只看該作者
5#
發(fā)表于 2025-3-22 09:30:10 | 只看該作者
Appendices,ordinates (. = 0). We briefly discussed a further simplified situation in § 1.2.1 which concerned 2-tori and was based on circle maps. However, our proof is characteristic for all the other contexts mentioned throughout. For a similar proof in the Hamiltonian setting [the Hamiltonian isotropic (.,0,0) context], see P?schel [278].
6#
發(fā)表于 2025-3-22 14:02:06 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/q/image/781614.jpg
7#
發(fā)表于 2025-3-22 20:31:59 | 只看該作者
8#
發(fā)表于 2025-3-23 01:16:42 | 只看該作者
iegata per la diagnosi di malattia.?Notevoli e rapidi avanzamenti tecnologici hanno portato alla? sempre maggiore diffusione delle procedure interventistiche?ecoguidate, modificando in modo significativo le strategie diagnostiche e terapeutiche di molte patologie. Il volume presenta una concisa pano
9#
發(fā)表于 2025-3-23 01:53:02 | 只看該作者
la diagnosi di malattia.?Notevoli e rapidi avanzamenti tecnologici hanno portato alla? sempre maggiore diffusione delle procedure interventistiche?ecoguidate, modificando in modo significativo le strategie diagnostiche e terapeutiche di molte patologie. Il volume presenta una concisa panoramica del
10#
發(fā)表于 2025-3-23 06:30:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 08:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广汉市| 沁源县| 冷水江市| 松阳县| 礼泉县| 忻州市| 浪卡子县| 内乡县| 宜城市| 雅江县| 枣强县| 阿鲁科尔沁旗| 新邵县| 嘉义县| 金华市| 兴海县| 二连浩特市| 五常市| 炉霍县| 淮滨县| 镇江市| 永德县| 张家港市| 双峰县| 鄂托克前旗| 缙云县| 临泽县| 乐山市| 和硕县| 保德县| 三穗县| 湾仔区| 武宁县| 关岭| 屏南县| 固原市| 天台县| 晋江市| 辽宁省| 灌南县| 老河口市|