找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic Mappings and Clifford Algebras; Jacques Helmstetter,Artibano Micali Book 2008 Birkh?user Basel 2008 Clifford algebra.Lipschitz g

[復(fù)制鏈接]
樓主: Body-Mass-Index
11#
發(fā)表于 2025-3-23 13:06:37 | 只看該作者
12#
發(fā)表于 2025-3-23 16:28:35 | 只看該作者
13#
發(fā)表于 2025-3-23 19:36:41 | 只看該作者
14#
發(fā)表于 2025-3-24 02:13:40 | 只看該作者
15#
發(fā)表于 2025-3-24 06:22:19 | 只看該作者
16#
發(fā)表于 2025-3-24 10:18:39 | 只看該作者
17#
發(fā)表于 2025-3-24 14:06:37 | 只看該作者
Quadratic Mappings,n . will be especially helpful in ., where their effectiveness also depends on an insightful use of localization and globalization. Besides, the concept of “hyperbolic space” is also essential in the last Sections . and . devoted to Witt rings.
18#
發(fā)表于 2025-3-24 18:49:56 | 只看該作者
19#
發(fā)表于 2025-3-24 20:02:13 | 只看該作者
Hyperbolic Spaces,l isomorphisms . → (.)* → .* and . → . → .* (see (2.3.7)). As a quadratic module, . will also interest us, and the short notation (.) (instead of (.)) will be preferred; it is clear that the quadratic form . on . is determined by its restriction to . and by the above isomorphism . → .*.
20#
發(fā)表于 2025-3-25 02:01:52 | 只看該作者
Book 2008rphisms of quadratic forms and Clifford algebras are based on the concept of the Lipschitz monoid, from which several groups are derived; and the Cartan-Chevalley theory of hyperbolic spaces becomes much more general, precise and effective..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沛县| 河源市| 桐乡市| 喀什市| 临夏县| 如皋市| 盐山县| 贵德县| 安远县| 加查县| 华容县| 南华县| 杭锦旗| 隆尧县| 东阿县| 上杭县| 建水县| 龙胜| 永和县| 乳山市| 拉孜县| 德惠市| 句容市| 锡林浩特市| 鹤峰县| 竹溪县| 醴陵市| 天长市| 枣强县| 涞源县| 大兴区| 繁峙县| 海安县| 旅游| 宜兰市| 寿阳县| 油尖旺区| 娄烦县| 巫山县| 桃江县| 金坛市|