找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic Mappings and Clifford Algebras; Jacques Helmstetter,Artibano Micali Book 2008 Birkh?user Basel 2008 Clifford algebra.Lipschitz g

[復(fù)制鏈接]
查看: 41539|回復(fù): 41
樓主
發(fā)表于 2025-3-21 18:18:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Quadratic Mappings and Clifford Algebras
編輯Jacques Helmstetter,Artibano Micali
視頻videohttp://file.papertrans.cn/781/780051/780051.mp4
概述The study of Clifford algebras leads to sophisticated theories involving noncommutative algebras over a ring, e.g., Azumaya algebras, Morita theory, separability.Provides a self-contained introduction
圖書(shū)封面Titlebook: Quadratic Mappings and Clifford Algebras;  Jacques Helmstetter,Artibano Micali Book 2008 Birkh?user Basel 2008 Clifford algebra.Lipschitz g
描述.After a classical presentation of quadratic mappings and Clifford algebras over arbitrary rings (commutative, associative, with unit), other topics involve more original methods: interior multiplications allow an effective treatment of deformations of Clifford algebras; the relations between automorphisms of quadratic forms and Clifford algebras are based on the concept of the Lipschitz monoid, from which several groups are derived; and the Cartan-Chevalley theory of hyperbolic spaces becomes much more general, precise and effective..
出版日期Book 2008
關(guān)鍵詞Clifford algebra; Lipschitz group; algebra; hyperbolic space; orthogonal group; quadratic form; quadratic
版次1
doihttps://doi.org/10.1007/978-3-7643-8606-1
isbn_ebook978-3-7643-8606-1
copyrightBirkh?user Basel 2008
The information of publication is updating

書(shū)目名稱Quadratic Mappings and Clifford Algebras影響因子(影響力)




書(shū)目名稱Quadratic Mappings and Clifford Algebras影響因子(影響力)學(xué)科排名




書(shū)目名稱Quadratic Mappings and Clifford Algebras網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Quadratic Mappings and Clifford Algebras網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Quadratic Mappings and Clifford Algebras被引頻次




書(shū)目名稱Quadratic Mappings and Clifford Algebras被引頻次學(xué)科排名




書(shū)目名稱Quadratic Mappings and Clifford Algebras年度引用




書(shū)目名稱Quadratic Mappings and Clifford Algebras年度引用學(xué)科排名




書(shū)目名稱Quadratic Mappings and Clifford Algebras讀者反饋




書(shū)目名稱Quadratic Mappings and Clifford Algebras讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:38:50 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:45:27 | 只看該作者
http://image.papertrans.cn/q/image/780051.jpg
地板
發(fā)表于 2025-3-22 07:00:44 | 只看該作者
https://doi.org/10.1007/978-3-7643-8606-1Clifford algebra; Lipschitz group; algebra; hyperbolic space; orthogonal group; quadratic form; quadratic
5#
發(fā)表于 2025-3-22 09:26:28 | 只看該作者
6#
發(fā)表于 2025-3-22 16:28:15 | 只看該作者
Jacques Helmstetter,Artibano MicaliThe study of Clifford algebras leads to sophisticated theories involving noncommutative algebras over a ring, e.g., Azumaya algebras, Morita theory, separability.Provides a self-contained introduction
7#
發(fā)表于 2025-3-22 17:04:37 | 只看該作者
Algebraic Preliminaries,some more specialized knowledge:. Complete knowledge of . this chapter is not indispensable, because precise references will always be given when the most difficult or specialized results are needed in the following chapters.
8#
發(fā)表于 2025-3-23 00:09:13 | 只看該作者
9#
發(fā)表于 2025-3-23 01:58:09 | 只看該作者
10#
發(fā)表于 2025-3-23 07:34:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐源县| 甘德县| 西乌| 华宁县| 印江| 类乌齐县| 谢通门县| 宁陕县| 云安县| 勃利县| 辽中县| 上杭县| 密山市| 聂荣县| 逊克县| 信宜市| 天镇县| 桂阳县| 赣榆县| 鄢陵县| 宜阳县| 邹平县| 道孚县| SHOW| 龙山县| 安西县| 阳新县| 和田县| 如东县| 齐齐哈尔市| 浦北县| 千阳县| 皋兰县| 马边| 四子王旗| 巨野县| 丰顺县| 平昌县| 金沙县| 兴义市| 遂溪县|