找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

1234
返回列表
打印 上一主題 下一主題

Titlebook: Proceedings of the Future Technologies Conference (FTC) 2024, Volume 3; Kohei Arai Conference proceedings 2024 The Editor(s) (if applicabl

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 22:57:36 | 只看該作者
Yuxin Du,Jing Fan,Ari Happonen,Dassan Paulraj,Micheal Tuapend approaches that directly adopt OCR features as the input of an information extraction module, we propose to use contrastive learning to narrow the semantic gap caused by the difference between the tasks of OCR and information extraction. We evaluate the existing end-to-end methods for VIE on the
32#
發(fā)表于 2025-3-27 03:18:41 | 只看該作者
Tobias Dorrn,Almuth Müllerve experiments show that the proposed method outperforms the existing two-stage cascade models and one-stage end-to-end models with a lighter and faster architecture. Furthermore, the ablation studies verify the generalization of our method, where the proposed modal adapter is effective to bridge va
33#
發(fā)表于 2025-3-27 05:40:27 | 只看該作者
Wisam Bukaita,Guillermo Garcia de Celis,Manaswi Gurram enhance recognition. Experiments on three datasets prove our method can achieve state-of-the-art recognition performance, and cross-dataset experiments on two datasets verify the generality of our method. Moreover, our method can achieve a breakneck inference speed of 104 FPS with a small backbone
34#
發(fā)表于 2025-3-27 11:13:23 | 只看該作者
Yeferson Torres Berru,Santiago Jimenez,Lander Chicaiza,Viviana Espinoza Loayzar proposed approach outperforms several existing state-of-the-art approaches, including complex approaches utilizing generative adversarial networks (GANs) and variational auto-encoders (VAEs), on 7 of the datasets, while achieving comparable performance on the remaining 2 datasets. Our findings sug
35#
發(fā)表于 2025-3-27 14:10:27 | 只看該作者
Xiaoting Huang,Xuelian Xi,Siqi Wang,Zahra Sadeghi,Asif Samir,Stan Matwined on general domain document images, by fine-tuning them on an in-domain annotated subset of EEBO. In experiments, we find that an appropriately trained image-only classifier performs as well or better than text-based poetry classifiers on human transcribed text, and far surpasses the performance o
36#
發(fā)表于 2025-3-27 19:37:48 | 只看該作者
Dorsa Soleymani,Mahsa Mousavi Diva,Lovelyn Uzoma Ozougwu,Riasat Mahbub,Zahra Sadeghi,Asif Samir,Stan Matwine-of-the-art in both datasets, achieving a word recognition rate of . and a 2.41 DTW on IRONOFF and an expression recognition rate of . and a DTW of 13.93 on CROHME 2019. This work constitutes an important milestone toward full offline document conversion to online.
1234
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广汉市| 北碚区| 从江县| 彭水| 岫岩| 霞浦县| 绩溪县| 藁城市| 特克斯县| 郸城县| 平度市| 堆龙德庆县| 山东省| 阿拉善盟| 绥宁县| 丰原市| 邵阳县| 镇坪县| 翁牛特旗| 新郑市| 镇安县| 定兴县| 胶南市| 平江县| 濮阳市| 开阳县| 呼和浩特市| 华安县| 浠水县| 阳山县| 汝城县| 云龙县| 平罗县| 陵川县| 普格县| 桑植县| 靖江市| 茂名市| 即墨市| 莲花县| 胶州市|