找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Proceedings of the Future Technologies Conference (FTC) 2024, Volume 3; Kohei Arai Conference proceedings 2024 The Editor(s) (if applicabl

[復(fù)制鏈接]
查看: 43532|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:29:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Proceedings of the Future Technologies Conference (FTC) 2024, Volume 3
編輯Kohei Arai
視頻videohttp://file.papertrans.cn/765/764564/764564.mp4
概述Presents recent advances in the areas of AI, robotics, computing, electronics, security, and communications.Covers the proceedings of Future Technologies Conference 2024 (FTC 2024).Written by experts
叢書名稱Lecture Notes in Networks and Systems
圖書封面Titlebook: Proceedings of the Future Technologies Conference (FTC) 2024, Volume 3;  Kohei Arai Conference proceedings 2024 The Editor(s) (if applicabl
描述.This book covers proceedings of the Future Technologies Conference (FTC) 2024 which showcase a collection of thoroughly researched studies presented at the ninth Future Technologies Conference, held in London, the UK. This premier annual event highlights groundbreaking research in artificial intelligence, computer vision, data science, computing, ambient intelligence, and related fields...With 476 submissions, FTC 2024 gathers visionary minds to explore innovative solutions to today‘s most pressing challenges. The 173 selected papers represent cutting-edge advancements that foster vital conversations and future collaborations in the realm of information technologies...The authors extend their deepest gratitude to all contributors, reviewers, and participants for making FTC 2024 an unparalleled success. The authors hope this volume inspires and informs its readers, encouraging continued exploration and innovation in future technologies..
出版日期Conference proceedings 2024
關(guān)鍵詞Computing; Electronics; Intelligent Systems; Robotics; Machine Vision; Security and Communications; FTC 20
版次1
doihttps://doi.org/10.1007/978-3-031-73125-9
isbn_softcover978-3-031-73124-2
isbn_ebook978-3-031-73125-9Series ISSN 2367-3370 Series E-ISSN 2367-3389
issn_series 2367-3370
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Proceedings of the Future Technologies Conference (FTC) 2024, Volume 3影響因子(影響力)




書目名稱Proceedings of the Future Technologies Conference (FTC) 2024, Volume 3影響因子(影響力)學(xué)科排名




書目名稱Proceedings of the Future Technologies Conference (FTC) 2024, Volume 3網(wǎng)絡(luò)公開度




書目名稱Proceedings of the Future Technologies Conference (FTC) 2024, Volume 3網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Proceedings of the Future Technologies Conference (FTC) 2024, Volume 3被引頻次




書目名稱Proceedings of the Future Technologies Conference (FTC) 2024, Volume 3被引頻次學(xué)科排名




書目名稱Proceedings of the Future Technologies Conference (FTC) 2024, Volume 3年度引用




書目名稱Proceedings of the Future Technologies Conference (FTC) 2024, Volume 3年度引用學(xué)科排名




書目名稱Proceedings of the Future Technologies Conference (FTC) 2024, Volume 3讀者反饋




書目名稱Proceedings of the Future Technologies Conference (FTC) 2024, Volume 3讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:33:53 | 只看該作者
Salma Alghamdi,Lama Al Khuzayem,Ohoud Al-Zamzamions, composite background, noise etc. and language specific issues like cursive connectivity among the characters etc. makes OCR challenging and erroneous for Indian languages. The language specific challenges can be overcome by computing the script-based features and can achieve better accuracy. Co
板凳
發(fā)表于 2025-3-22 02:35:44 | 只看該作者
地板
發(fā)表于 2025-3-22 06:50:37 | 只看該作者
Bowen Sun,Hoi-Sim Wong,Shibao Zhengith flat named entities, whereas entities are often nested. For example, a postal address might contain a street name and a number. This work compares three nested NER approaches, including two state-of-the-art approaches using Transformer-based architectures. We introduce a new Transformer-based ap
5#
發(fā)表于 2025-3-22 11:54:37 | 只看該作者
Muhammad Arslan,Muhammad Mubeen,Syed Muhammad Usmanays, Masked Image Modeling?(MIM) shows superiority in visual representation learning, and several works introduce it into text recognition. In this paper, we take a further step and design a method for text-recognition-friendly self-supervised feature learning. Specifically, we propose to decouple v
6#
發(fā)表于 2025-3-22 16:33:39 | 只看該作者
Vasanth Iyer,Igor Ternovskiye-structure can be recognized with impressive accuracy using Image-to-Markup-Sequence (Im2Seq) approaches. Taking only the image of a table, such models predict a sequence of tokens (e.g. in HTML, LaTeX) which represent the structure of the table. Since the token representation of the table structur
7#
發(fā)表于 2025-3-22 19:08:44 | 只看該作者
8#
發(fā)表于 2025-3-22 22:57:57 | 只看該作者
Verónica de Jesús Pérez Franco,Ana Lilia Coria Páez,Jesús Jaime Moreno Escobar,Oswaldo Morales Matamoros,Erika Yolanda Aguilar del Villar,Mauro Daniel Castillo Pérezpre-training. In contrast, humans can usually identify key-value pairings from a form only by looking at layouts, even if they don’t comprehend the language used. No prior research has been conducted to investigate how helpful layout information alone is for form understanding. Hence, we propose a u
9#
發(fā)表于 2025-3-23 04:24:22 | 只看該作者
Ashutosh Sagar,Ishan Makadia,Meet Sinojia,Zahra Sadeghi,Stan MatwinMost works do not consider the long-tailed distribution issue in oracle character recognition, resulting in a biased DNN towards head classes. To overcome this issue, we propose a two-stage decoupled learning method to train an unbiased DNN model for long-tailed oracle character recognition. In the
10#
發(fā)表于 2025-3-23 07:14:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 22:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三台县| 娱乐| 桦川县| 海伦市| 肇源县| 永泰县| 灵璧县| 仁寿县| 连城县| 马公市| 黄浦区| 临桂县| 深泽县| 万盛区| 淮南市| 彰武县| 镇赉县| 宜良县| 朝阳市| 新和县| 襄樊市| 阜平县| 五华县| 杭锦旗| 蕉岭县| 武强县| 湘阴县| 渭南市| 广饶县| 察隅县| 阿鲁科尔沁旗| 攀枝花市| 江西省| 芦山县| 广灵县| 明星| 华蓥市| 镇宁| 景谷| 安福县| 小金县|