找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces; Iwona Chlebicka,Piotr Gwiazda,Aneta Wróblewska-Kam Book 2021 Springe

[復(fù)制鏈接]
查看: 16692|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:13:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces
編輯Iwona Chlebicka,Piotr Gwiazda,Aneta Wróblewska-Kam
視頻videohttp://file.papertrans.cn/742/741523/741523.mp4
概述Studies PDEs with simultaneous non-polynomial, inhomogeneous and fully anisotropic growth conditions.Includes a complete introduction to the requisite functional analytic framework.Provides new tools
叢書(shū)名稱Springer Monographs in Mathematics
圖書(shū)封面Titlebook: Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces;  Iwona Chlebicka,Piotr Gwiazda,Aneta Wróblewska-Kam Book 2021 Springe
描述.This book provides a detailed study of nonlinear partial differential equations satisfying certain nonstandard growth conditions which simultaneously extend polynomial, inhomogeneous and fully anisotropic growth. The common property of the many different kinds of equations considered is that the growth conditions of the highest order operators lead to a formulation of the equations in Musielak–Orlicz spaces. This high level of generality, understood as full anisotropy and inhomogeneity, requires new proof concepts and a generalization of the formalism, calling for an extended functional analytic framework. This theory is established in the first part of the book, which serves as an introduction to the subject, but is also an important ingredient of the whole story. The second part uses these theoretical tools for various types of PDEs, including abstract and parabolic equations but also PDEs arising from fluid and solid mechanics. For connoisseurs, there is a short chapter on homogenization of elliptic PDEs...The book will be of interest to researchers working in PDEs and in functional analysis. .
出版日期Book 2021
關(guān)鍵詞Musielak-Orlicz spaces; Non-standard growth problems; Non-Newtonian fluids; Renormalized solutions; Gene
版次1
doihttps://doi.org/10.1007/978-3-030-88856-5
isbn_softcover978-3-030-88858-9
isbn_ebook978-3-030-88856-5Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書(shū)目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces影響因子(影響力)




書(shū)目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces影響因子(影響力)學(xué)科排名




書(shū)目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces被引頻次




書(shū)目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces被引頻次學(xué)科排名




書(shū)目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces年度引用




書(shū)目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces年度引用學(xué)科排名




書(shū)目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces讀者反饋




書(shū)目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:46:40 | 只看該作者
第141523主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:15:14 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:04:26 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:04:35 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:23:40 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:11:17 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:28:04 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:18:56 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:55:50 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 03:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
韶山市| 交城县| 蓬莱市| 永泰县| 田林县| 许昌市| 兰西县| 布尔津县| 韶关市| 高唐县| 平乡县| 康乐县| 沾益县| 乐亭县| 乌拉特前旗| 即墨市| 光泽县| 新疆| 桂东县| 卢湾区| 股票| 舞阳县| 关岭| 雅安市| 潜江市| 保德县| 化州市| 屏东县| 霞浦县| 旬邑县| 朝阳县| 凤冈县| 贵德县| 周宁县| 湖北省| 宁晋县| 上饶县| 于田县| 大悟县| 荔浦县| 百色市|