找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces; Iwona Chlebicka,Piotr Gwiazda,Aneta Wróblewska-Kam Book 2021 Springe

[復(fù)制鏈接]
查看: 16696|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:13:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces
編輯Iwona Chlebicka,Piotr Gwiazda,Aneta Wróblewska-Kam
視頻videohttp://file.papertrans.cn/742/741523/741523.mp4
概述Studies PDEs with simultaneous non-polynomial, inhomogeneous and fully anisotropic growth conditions.Includes a complete introduction to the requisite functional analytic framework.Provides new tools
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces;  Iwona Chlebicka,Piotr Gwiazda,Aneta Wróblewska-Kam Book 2021 Springe
描述.This book provides a detailed study of nonlinear partial differential equations satisfying certain nonstandard growth conditions which simultaneously extend polynomial, inhomogeneous and fully anisotropic growth. The common property of the many different kinds of equations considered is that the growth conditions of the highest order operators lead to a formulation of the equations in Musielak–Orlicz spaces. This high level of generality, understood as full anisotropy and inhomogeneity, requires new proof concepts and a generalization of the formalism, calling for an extended functional analytic framework. This theory is established in the first part of the book, which serves as an introduction to the subject, but is also an important ingredient of the whole story. The second part uses these theoretical tools for various types of PDEs, including abstract and parabolic equations but also PDEs arising from fluid and solid mechanics. For connoisseurs, there is a short chapter on homogenization of elliptic PDEs...The book will be of interest to researchers working in PDEs and in functional analysis. .
出版日期Book 2021
關(guān)鍵詞Musielak-Orlicz spaces; Non-standard growth problems; Non-Newtonian fluids; Renormalized solutions; Gene
版次1
doihttps://doi.org/10.1007/978-3-030-88856-5
isbn_softcover978-3-030-88858-9
isbn_ebook978-3-030-88856-5Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces影響因子(影響力)




書目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces影響因子(影響力)學(xué)科排名




書目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces網(wǎng)絡(luò)公開度




書目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces被引頻次




書目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces被引頻次學(xué)科排名




書目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces年度引用




書目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces年度引用學(xué)科排名




書目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces讀者反饋




書目名稱Partial Differential Equations in Anisotropic Musielak-Orlicz Spaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:46:40 | 只看該作者
第141523主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:15:14 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:04:26 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:04:35 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:23:40 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:11:17 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:28:04 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:18:56 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:55:50 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 05:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伊川县| 伊宁县| 娄底市| 万荣县| 西华县| 鹤峰县| 邵东县| 长汀县| 孙吴县| 肃南| 石渠县| 收藏| 福建省| 福贡县| 浠水县| 祥云县| 铜陵市| 息烽县| 菏泽市| 靖西县| 商河县| 遵义县| 姜堰市| 新乡市| 博兴县| 尼玛县| 万载县| 增城市| 教育| 阿克陶县| 天等县| 娄底市| 宝丰县| 修水县| 长岛县| 安丘市| 鄂尔多斯市| 丘北县| 穆棱市| 南皮县| 兴隆县|