找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Polynomials; 2nd AIMS-Volkswagen Mama Foupouagnigni,Wolfram Koepf Conference proceedings 2020 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
樓主: OBESE
31#
發(fā)表于 2025-3-26 21:21:47 | 只看該作者
On the Solutions of Holonomic Third-Order Linear Irreducible Differential Equations in Terms of Hyperd-order linear differential operator L, with rational function coefficients and without Liouvillian solutions, in terms of functions . where .. with .?∈{0, 1, 2}, .?∈{1, 2}, is the generalized hypergeometric function. That means we find rational functions ., .., .., .., . such that the solution of
32#
發(fā)表于 2025-3-27 01:49:17 | 只看該作者
Hypergeometric Multivariate Orthogonal Polynomials orthogonal polynomials, including classical continuous, classical discrete, their .-analogues and also classical orthogonal polynomials on nonuniform lattices. In all these cases, the orthogonal polynomials are solution of a second-order differential, difference, .-difference, or divided-difference
33#
發(fā)表于 2025-3-27 06:38:22 | 只看該作者
Some Characterization Problems Related to Sheffer Polynomial Setsonal polynomial sets of Sheffer type. We revisit some families in the literature and we state an explicit formula giving the exact number of Sheffer type .-orthogonal sets. We investigate, in detail, the (.?+?1)-fold symmetric case as well as the particular cases .?=?1, 2, 3.
34#
發(fā)表于 2025-3-27 13:21:35 | 只看該作者
35#
發(fā)表于 2025-3-27 17:17:53 | 只看該作者
Two Variable Orthogonal Polynomials and Fejér-Riesz Factorizationnal polynomials is reviewed with an eye toward applying it to the bivariate case. The lexicographical and reverse lexicographical orderings are used to order the monomials for the Gram–Schmidt procedues and recurrence formulas are derived between the polynomials of different degrees. These formulas
36#
發(fā)表于 2025-3-27 20:38:27 | 只看該作者
Exceptional Orthogonal Polynomials and Rational Solutions to Painlevé Equations summarize the basic results and construction of exceptional poynomials, developed over the past 10 years. In addition, some new results are presented on the construction of rational solutions to Painlevé equation P. and its higher order generalizations that belong to the .-Painlevé hierarchy. The c
37#
發(fā)表于 2025-3-28 00:57:46 | 只看該作者
38#
發(fā)表于 2025-3-28 04:04:09 | 只看該作者
39#
發(fā)表于 2025-3-28 09:18:54 | 只看該作者
Conference proceedings 2020m other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painlevé equations..The contributions are bas
40#
發(fā)表于 2025-3-28 13:56:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 22:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁津县| 遂溪县| 福建省| 西峡县| 故城县| 广昌县| 平原县| 浦北县| 南召县| 永昌县| 个旧市| 兴国县| 乌什县| 澜沧| 绥宁县| 长岛县| 宽甸| 富民县| 读书| 日土县| 布拖县| 汉沽区| 旅游| 苗栗县| 马鞍山市| 英吉沙县| 汶上县| 杨浦区| 阿瓦提县| 沁阳市| 青河县| 休宁县| 黔江区| 达孜县| 天峻县| 辉南县| 通许县| 乌兰察布市| 长沙市| 万载县| 青阳县|