找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Polynomials; 2nd AIMS-Volkswagen Mama Foupouagnigni,Wolfram Koepf Conference proceedings 2020 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
查看: 30945|回復(fù): 59
樓主
發(fā)表于 2025-3-21 18:14:36 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Orthogonal Polynomials
副標題2nd AIMS-Volkswagen
編輯Mama Foupouagnigni,Wolfram Koepf
視頻videohttp://file.papertrans.cn/705/704706/704706.mp4
概述Develops and discusses new ideas in orthogonal polynomials and applications.Gives young researchers a good mastering of the basics of orthogonal polynomials.Fosters a proper understanding of orthogona
叢書名稱Tutorials, Schools, and Workshops in the Mathematical Sciences
圖書封面Titlebook: Orthogonal Polynomials; 2nd AIMS-Volkswagen  Mama Foupouagnigni,Wolfram Koepf Conference proceedings 2020 Springer Nature Switzerland AG 20
描述.This book presents contributions of international and local experts from the African Institute for Mathematical Sciences (AIMS-Cameroon) and also from other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painlevé equations..The contributions are based on lectures given at the AIMS-Volkswagen Stiftung Workshop on Introduction of Orthogonal Polynomials and Applications held on October 5–12, 2018 in Douala, Cameroon. This workshop, funded within the framework of the Volkswagen Foundation Initiative "Symposia and Summer Schools", was aimed globally at promoting capacity building in terms of research and training in orthogonal polynomials and applications, discussions and development of new ideas as well as development and enhancement of networking including south-south cooperation..
出版日期Conference proceedings 2020
關(guān)鍵詞univariate orthogonal polynomial; multivariate orthogonal polynomial; multiple orthogonal polynomial; r
版次1
doihttps://doi.org/10.1007/978-3-030-36744-2
isbn_softcover978-3-030-36746-6
isbn_ebook978-3-030-36744-2Series ISSN 2522-0969 Series E-ISSN 2522-0977
issn_series 2522-0969
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Orthogonal Polynomials影響因子(影響力)




書目名稱Orthogonal Polynomials影響因子(影響力)學(xué)科排名




書目名稱Orthogonal Polynomials網(wǎng)絡(luò)公開度




書目名稱Orthogonal Polynomials網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Orthogonal Polynomials被引頻次




書目名稱Orthogonal Polynomials被引頻次學(xué)科排名




書目名稱Orthogonal Polynomials年度引用




書目名稱Orthogonal Polynomials年度引用學(xué)科排名




書目名稱Orthogonal Polynomials讀者反饋




書目名稱Orthogonal Polynomials讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:53:02 | 只看該作者
Orthogonal Polynomials978-3-030-36744-2Series ISSN 2522-0969 Series E-ISSN 2522-0977
板凳
發(fā)表于 2025-3-22 02:29:09 | 只看該作者
Classical Continuous Orthogonal PolynomialsClassical orthogonal polynomials (Hermite, Laguerre, Jacobi and Bessel) constitute the most important families of orthogonal polynomials. They appear in mathematical physics when Sturn-Liouville problems for hypergeometric differential equation are studied. These families of orthogonal polynomials have specific properties. Our main aim is to:
地板
發(fā)表于 2025-3-22 08:06:30 | 只看該作者
Generating Functions and Hypergeometric Representations of Classical Continuous Orthogonal PolynomiaThe aim of this work is to show how to obtain generating functions for classical orthogonal polynomials and derive their hypergeometric representations.
5#
發(fā)表于 2025-3-22 11:19:17 | 只看該作者
Classical Orthogonal Polynomials of a Discrete and a ,-Discrete VariableThe classical orthogonal polynomials of discrete and .-discrete orthogonal polynomials are introduced from their difference and .-difference equations. Some structure formulas are proved for the Charlier and the Al-Salam Carlitz polynomials from their generating functions.
6#
發(fā)表于 2025-3-22 15:55:31 | 只看該作者
7#
發(fā)表于 2025-3-22 18:08:06 | 只看該作者
Signal Processing, Orthogonal Polynomials, and Heun EquationsA survey of recents advances in the theory of Heun operators is offered. Some of the topics covered include: quadratic algebras and orthogonal polynomials, differential and difference Heun operators associated to Jacobi and Hahn polynomials, connections with time and band limiting problems in signal processing.
8#
發(fā)表于 2025-3-22 23:59:36 | 只看該作者
Mama Foupouagnigni,Wolfram KoepfDevelops and discusses new ideas in orthogonal polynomials and applications.Gives young researchers a good mastering of the basics of orthogonal polynomials.Fosters a proper understanding of orthogona
9#
發(fā)表于 2025-3-23 02:28:04 | 只看該作者
Tutorials, Schools, and Workshops in the Mathematical Scienceshttp://image.papertrans.cn/o/image/704706.jpg
10#
發(fā)表于 2025-3-23 06:43:19 | 只看該作者
https://doi.org/10.1007/978-3-030-36744-2univariate orthogonal polynomial; multivariate orthogonal polynomial; multiple orthogonal polynomial; r
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 19:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清镇市| 浏阳市| 河津市| 临潭县| 奇台县| 康乐县| 汨罗市| 青岛市| 祁阳县| 宝应县| 固阳县| 遵化市| 革吉县| 奈曼旗| 通山县| 方山县| 日土县| 卢湾区| 湟中县| 内黄县| 庆城县| 监利县| 囊谦县| 固始县| 曲靖市| 巴彦县| 大关县| 尚志市| 凯里市| 阿尔山市| 澜沧| 瓮安县| 交口县| 崇明县| 琼海市| 融水| 大化| 错那县| 巩留县| 龙泉市| 松溪县|