找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Latin Squares Based on Groups; Anthony B. Evans Book 2018 Springer International Publishing AG, part of Springer Nature 2018 Or

[復(fù)制鏈接]
樓主: McKinley
11#
發(fā)表于 2025-3-23 10:13:16 | 只看該作者
Elementary Abelian Groups. Istudy of orthomorphism graphs of these groups. In particular, any function from a finite field to itself, and thus any orthomorphism of the additive group of the field, can be realized as a polynomial function. Several interesting classes of orthomorphisms will be described as sets of orthomorphism
12#
發(fā)表于 2025-3-23 16:00:03 | 只看該作者
Elementary Abelian Groups. II orthomorphisms, orthomorphisms of the form .?.; and quadratic orthomorphisms, orthomorphisms of the form . maps to . if . is a square and . if . is a nonsquare. In this chapter we generalize linear and quadratic orthomorphisms by partitioning the elements of a finite field into cyclotomy classes {.
13#
發(fā)表于 2025-3-23 20:44:01 | 只看該作者
Extensions of Orthomorphism Graphs abelian groups that have received significant attention are the cyclic groups and direct products of elementary abelian groups. In this chapter we will define the extension of the orthomorphism graph of a group . by a group .: this is an orthomorphism graph of .?×?.. We will discuss two special cas
14#
發(fā)表于 2025-3-24 02:00:25 | 只看該作者
(,) for Some Classes of Nonabelian Groups only classes of nonabelian groups for which attempts have been made to improve the lower bound for .(.) are the dihedral groups and some of the linear groups of even characteristic. We will present these improvements in this chapter. We will derive improved lower bounds for .(.), . the dihedral gro
15#
發(fā)表于 2025-3-24 05:13:31 | 只看該作者
16#
發(fā)表于 2025-3-24 09:55:25 | 只看該作者
17#
發(fā)表于 2025-3-24 10:49:44 | 只看該作者
Related Topics and orthomorphisms of groups. In our discussion of these topics, we will outline the work that has been done, presenting many of the results without proofs. Our emphasis will be on the role played by orthomorphisms and related mappings. We will introduce classes of complete mappings and orthomorphi
18#
發(fā)表于 2025-3-24 14:51:31 | 只看該作者
19#
發(fā)表于 2025-3-24 19:46:50 | 只看該作者
20#
發(fā)表于 2025-3-25 01:05:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝鸡市| 西乌珠穆沁旗| 临汾市| 巨野县| 保靖县| 永新县| 阜南县| 石泉县| 永年县| 饶河县| 瑞丽市| 昌图县| 林甸县| 克什克腾旗| 台南市| 梅河口市| 峨边| 青龙| 弥渡县| 石楼县| 芜湖县| 抚州市| 古交市| 象山县| 万全县| 玛曲县| 波密县| 颍上县| 卢龙县| 揭阳市| 林州市| 磐安县| 南昌县| 乐亭县| 鹤庆县| 交口县| 天峨县| 汝南县| 耿马| 龙门县| 闸北区|