找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Latin Squares Based on Groups; Anthony B. Evans Book 2018 Springer International Publishing AG, part of Springer Nature 2018 Or

[復制鏈接]
查看: 24908|回復: 49
樓主
發(fā)表于 2025-3-21 19:40:21 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Orthogonal Latin Squares Based on Groups
編輯Anthony B. Evans
視頻videohttp://file.papertrans.cn/705/704704/704704.mp4
概述Presents the first unified proof of the Hall–Paige conjecture.Discusses the actions of groups on designs derived from latin squares.Includes an extensive list of open problems on the construction and
叢書名稱Developments in Mathematics
圖書封面Titlebook: Orthogonal Latin Squares Based on Groups;  Anthony B. Evans Book 2018 Springer International Publishing AG, part of Springer Nature 2018 Or
描述This monograph presents a unified exposition of latin squares and mutually orthogonal sets of latin squares based on groups. Its focus is on orthomorphisms and complete mappings of finite groups, while also offering a complete proof of the Hall–Paige conjecture. The use of latin squares in constructions of nets, affine planes, projective planes, and transversal designs also motivates this inquiry.??.The text begins by introducing fundamental concepts, like the tests for determining whether a latin square is based on a group, as well as orthomorphisms and complete mappings. From there, it describes the existence problem for complete mappings of groups, building up to the proof of the Hall–Paige conjecture. The third part presents a comprehensive study of orthomorphism graphs of groups, while the last part provides a discussion of Cartesian projective planes, related combinatorial structures, and a list of open problems.??.Expanding the author’s 1992 monograph, .Orthomorphism Graphs of Groups., this book is an essential reference tool for mathematics researchers or graduate students tackling latin square problems in combinatorics. Its presentation draws on a basic understanding of fi
出版日期Book 2018
關鍵詞Orthomorphism; Complete mapping; Latin square; MOLS; Difference matrix; Orthogonality; Finite group; Finite
版次1
doihttps://doi.org/10.1007/978-3-319-94430-2
isbn_softcover978-3-030-06850-9
isbn_ebook978-3-319-94430-2Series ISSN 1389-2177 Series E-ISSN 2197-795X
issn_series 1389-2177
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

書目名稱Orthogonal Latin Squares Based on Groups影響因子(影響力)




書目名稱Orthogonal Latin Squares Based on Groups影響因子(影響力)學科排名




書目名稱Orthogonal Latin Squares Based on Groups網(wǎng)絡公開度




書目名稱Orthogonal Latin Squares Based on Groups網(wǎng)絡公開度學科排名




書目名稱Orthogonal Latin Squares Based on Groups被引頻次




書目名稱Orthogonal Latin Squares Based on Groups被引頻次學科排名




書目名稱Orthogonal Latin Squares Based on Groups年度引用




書目名稱Orthogonal Latin Squares Based on Groups年度引用學科排名




書目名稱Orthogonal Latin Squares Based on Groups讀者反饋




書目名稱Orthogonal Latin Squares Based on Groups讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:21:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:33:47 | 只看該作者
地板
發(fā)表于 2025-3-22 08:10:42 | 只看該作者
5#
發(fā)表于 2025-3-22 11:20:34 | 只看該作者
6#
發(fā)表于 2025-3-22 15:32:37 | 只看該作者
7#
發(fā)表于 2025-3-22 18:59:41 | 只看該作者
8#
發(fā)表于 2025-3-22 23:55:10 | 只看該作者
Minimal Counterexamples to the Hall-Paige Conjecturethat any minimal counterexample must be “close” to being a simple group. In 1992 Evans tried to improve on this by extending complete mappings of ., a subgroup of . of index 2, to complete mappings of .; and complete mappings of .∕., ., to complete mappings of .. Evans’ proofs require that certain t
9#
發(fā)表于 2025-3-23 03:31:10 | 只看該作者
A Proof of the Hall-Paige Conjecture finite simple group of Lie type, with the possible exception of.(2)., the Tits group, could be a minimal counterexample to this conjecture. As the alternating groups were proved to be admissible in 1955 by Hall and Paige, and the Mathieu groups were proved admissible in 1993 by Dalla Volta and Gavi
10#
發(fā)表于 2025-3-23 07:51:10 | 只看該作者
Orthomorphism Graphs of Groupsphism graphs: graphs whose vertices are orthomorphisms, and in which adjacency implies orthogonality. In this chapter we introduce orthomorphism graphs of groups. We describe the main problems of interest in the study of orthomorphism graphs, and we describe automorphisms and congruences of orthomor
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
区。| 韩城市| 普陀区| 偏关县| 马关县| 石门县| 汕尾市| 新津县| 锦州市| 北碚区| 铁岭市| 漳州市| 拉萨市| 北辰区| 淮阳县| 阳原县| 邹平县| 邳州市| 贵定县| 呼伦贝尔市| 安阳市| 桃源县| 措勤县| 荥经县| 忻州市| 三门峡市| 互助| 怀来县| 中西区| 吉木乃县| 修水县| 蓬溪县| 普格县| 九寨沟县| 丽水市| 滨州市| 元氏县| 河南省| 清丰县| 平顶山市| 凤山县|