找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Treatment and Analysis of Time-Fractional Evolution Equations; Bangti Jin,Zhi Zhou Book 2023 The Editor(s) (if applicable) and T

[復(fù)制鏈接]
樓主: 軍械
51#
發(fā)表于 2025-3-30 10:41:11 | 只看該作者
Optimal Control with Subdiffusion Constraint,analysis. In the last two chapters, we discuss the application of these results where nonsmooth data error estimates are central, i.e., a model optimal control problem with a subdiffusion constraint in this chapter, and a model inverse problem, backward subdiffusion, in Chap.?..
52#
發(fā)表于 2025-3-30 16:28:07 | 只看該作者
Backward Subdiffusion,d continuously on the data (in natural topology), whereas the observational data are always contaminated by measurement errors. Further, the involved problem data are often very weak, as for optimal control problems in Chap.?., and standard techniques may not apply directly.
53#
發(fā)表于 2025-3-30 19:12:46 | 只看該作者
,Existence, Uniqueness, and Regularity of?Solutions,In this chapter, we describe the basic mathematical theory of the standard time-fractional diffusion model, whose numerical treatment and analysis is the main topic of this book.
54#
發(fā)表于 2025-3-30 22:12:38 | 只看該作者
Finite Difference Methods on Graded Meshes,According to the solution theory in Chap. ., the solutions . to the subdiffusion model (.) generally do not enjoy very good regularity in time (in standard Sobolev spaces).
55#
發(fā)表于 2025-3-31 04:40:53 | 只看該作者
56#
發(fā)表于 2025-3-31 07:25:31 | 只看該作者
Semilinear Subdiffusion,So far, we have only discussed the numerical treatment of linear time-fractional evolution models.
57#
發(fā)表于 2025-3-31 12:02:52 | 只看該作者
Bangti Jin,Zhi ZhouProvides insight in the mathematics of numerical methods for solving time-fractional evolution equations.Presents ideas and methods of analysis, and covers most important topics in this active area of
58#
發(fā)表于 2025-3-31 14:27:29 | 只看該作者
59#
發(fā)表于 2025-3-31 18:14:39 | 只看該作者
60#
發(fā)表于 2025-4-1 01:25:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
香河县| 永清县| 阿荣旗| 襄汾县| 高淳县| 湖口县| 阜康市| 合作市| 灵川县| 嘉鱼县| 唐山市| 云安县| 谢通门县| 克东县| 同江市| 漳州市| 南木林县| 香河县| 德州市| 新泰市| 剑河县| 新乡市| 彭水| 财经| 福泉市| 望都县| 武冈市| 巴楚县| 宿迁市| 湘潭市| 靖边县| 宜君县| 花莲县| 沂源县| 茶陵县| 合阳县| 岳普湖县| 句容市| 昌乐县| 天门市| 长岭县|