找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Treatment and Analysis of Time-Fractional Evolution Equations; Bangti Jin,Zhi Zhou Book 2023 The Editor(s) (if applicable) and T

[復(fù)制鏈接]
樓主: 軍械
21#
發(fā)表于 2025-3-25 04:52:51 | 只看該作者
Finite Difference Methods on Uniform Meshes,hes using discrete Laplace transform, and derive sharp error bounds for nonsmooth and incompatible problem data. We also describe a correction scheme for the L1 scheme, similar to the corrected ., to restore the optimal convergence rate. The overall strategy for convergence analysis is similar to th
22#
發(fā)表于 2025-3-25 10:43:09 | 只看該作者
Nonnegativity Preservation,ata and the source .. It is natural to ask whether this property is inherited by certain spatially semidiscrete and fully discrete piecewise linear .s, including the standard Galerkin method, lumped mass method, and finite volume element method. In this chapter, we discuss the nonnegativity preserva
23#
發(fā)表于 2025-3-25 13:00:38 | 只看該作者
Subdiffusion with Time-Dependent Coefficients,n smoothing properties of the solution operators, often derived from Laplace transform of the governing equation and its discrete analogues. However, this idea does not directly apply to the case of a time-dependent elliptic operator, which we investigate in this chapter.
24#
發(fā)表于 2025-3-25 18:52:43 | 只看該作者
25#
發(fā)表于 2025-3-25 21:37:20 | 只看該作者
Spectral Galerkin Approximation,in Chaps.?.–., spectral methods with specially constructed basis functions can compensate the weakly singular behavior of solutions near ., and can approximate solutions of the time-fractional diffusion model accurately.
26#
發(fā)表于 2025-3-26 03:28:50 | 只看該作者
27#
發(fā)表于 2025-3-26 08:18:58 | 只看該作者
Optimal Control with Subdiffusion Constraint,analysis. In the last two chapters, we discuss the application of these results where nonsmooth data error estimates are central, i.e., a model optimal control problem with a subdiffusion constraint in this chapter, and a model inverse problem, backward subdiffusion, in Chap.?..
28#
發(fā)表于 2025-3-26 10:50:56 | 只看該作者
29#
發(fā)表于 2025-3-26 13:29:58 | 只看該作者
Bangti Jin,Zhi Zhounal cultures and core business practices (Birch & Batten, 2001;Milne, Owen & Tilt, 2001). Accordingly, they may downplay social issues, unless the values at stake just happen to coincide with their own personally held beliefs (Swanson, 1999). And even this ‘value coincidence’ may be uncommon (see Birch & Batten, 2001).
30#
發(fā)表于 2025-3-26 19:27:26 | 只看該作者
Bangti Jin,Zhi Zhounal cultures and core business practices (Birch & Batten, 2001;Milne, Owen & Tilt, 2001). Accordingly, they may downplay social issues, unless the values at stake just happen to coincide with their own personally held beliefs (Swanson, 1999). And even this ‘value coincidence’ may be uncommon (see Birch & Batten, 2001).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
菏泽市| 武安市| 鄂尔多斯市| 万年县| 乌拉特后旗| 醴陵市| 陇西县| 花莲市| 黄龙县| 曲周县| 苍南县| 应城市| 衡南县| 怀宁县| 葵青区| 汉中市| 博客| 宜丰县| 延边| 遂昌县| 黄平县| 杨浦区| 双峰县| 绍兴县| 通山县| 康定县| 酉阳| 德清县| 湖州市| 阿鲁科尔沁旗| 库车县| 崇文区| 竹溪县| 丁青县| 原平市| 即墨市| 翁源县| 阜阳市| 托里县| 陈巴尔虎旗| 岳阳县|