找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Nonsmooth Optimization; State of the Art Alg Adil M. Bagirov,Manlio Gaudioso,Sona Taheri Book 2020 Springer Nature Switzerland AG

[復(fù)制鏈接]
樓主: Ensign
11#
發(fā)表于 2025-3-23 11:15:18 | 只看該作者
Local Search for Nonsmooth DC Optimization with DC Equality and Inequality Constraintshe cluster point of the sequence is the KKT point for the original problem with the Lagrange multipliers provided by an auxiliary linearized problem. Finally, on the base of the developed theory several new stopping criteria are elaborated, which allow to transform the local search scheme into a local search algorithm.
12#
發(fā)表于 2025-3-23 17:29:00 | 只看該作者
Beyond the Oracle: Opportunities of Piecewise Differentiationdescribe the calculation of directionally active generalized gradients, generalized .-gradients and the checking of first and second order optimality conditions. All this is based on the abs-linearization of a piecewise smooth objective in abs-normal form.
13#
發(fā)表于 2025-3-23 20:48:03 | 只看該作者
14#
發(fā)表于 2025-3-23 22:57:29 | 只看該作者
15#
發(fā)表于 2025-3-24 03:22:07 | 只看該作者
Bundle Methods for Nonsmooth DC Optimizationhed. Bundle methods are developed based on a nonconvex piecewise linear model of the objective function and the convergence of these methods is studied. Numerical results are presented to demonstrate the performance of the methods.
16#
發(fā)表于 2025-3-24 10:19:06 | 只看該作者
On Mixed Integer Nonsmooth Optimizationby using Clarke subgradients as a substitute for the classical gradient. Ideas for convergence proofs are given as well as references where the details can be found. We also consider how some algorithms can be modified in order to solve nonconvex problems including ..-pseudoconvex functions or even ..-quasiconvex constraints.
17#
發(fā)表于 2025-3-24 13:23:38 | 只看該作者
18#
發(fā)表于 2025-3-24 16:27:28 | 只看該作者
Advances in Low-Memory Subgradient Optimization to execute these algorithms. To provide historical perspective this survey starts with the original result of Shor which opened this field with the application to the classical transportation problem. The theoretical complexity bounds for smooth and nonsmooth convex and quasiconvex optimization pro
19#
發(fā)表于 2025-3-24 22:23:24 | 只看該作者
Standard Bundle Methods: Untrusted Models and Dualitypproaches are based on constructing models of the function, but lack of continuity of first-order information implies that these models cannot be trusted, not even close to an optimum. Therefore, many different forms of stabilization have been proposed to try to avoid being led to areas where the mo
20#
發(fā)表于 2025-3-25 03:00:18 | 只看該作者
A Second Order Bundle Algorithm for Nonsmooth, Nonconvex Optimization Problems method by Fendl and Schichl (A feasible second order bundle algorithm for nonsmooth, nonconvex optimization problems with inequality constraints: I. derivation and convergence. arXiv:1506.07937, 2015, preprint) to the general nonlinearly constrained case. Instead of using a penalty function or a fi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
布尔津县| 栾川县| 罗源县| 惠东县| 沅江市| 集贤县| 互助| 榕江县| 泽州县| 濮阳市| 崇礼县| 桑日县| 中方县| 乌鲁木齐市| 天等县| 博野县| 武汉市| 奎屯市| 奉新县| 天祝| 吐鲁番市| 靖西县| 桓仁| 桦川县| 皋兰县| 曲沃县| 隆回县| 比如县| 伊通| 金川县| 安康市| 襄汾县| 阿克| 铁岭市| 濉溪县| 常宁市| 东明县| 巨野县| 平遥县| 洪泽县| 阜南县|