找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Nonsmooth Optimization; State of the Art Alg Adil M. Bagirov,Manlio Gaudioso,Sona Taheri Book 2020 Springer Nature Switzerland AG

[復(fù)制鏈接]
樓主: Ensign
21#
發(fā)表于 2025-3-25 06:34:13 | 只看該作者
22#
發(fā)表于 2025-3-25 07:37:12 | 只看該作者
23#
發(fā)表于 2025-3-25 12:10:24 | 只看該作者
24#
發(fā)表于 2025-3-25 16:59:32 | 只看該作者
Bundle Methods for Nonsmooth DC Optimizationconditions are discussed and the relationship between sets of different stationary points (critical, Clarke stationary and inf-stationary) is established. Bundle methods are developed based on a nonconvex piecewise linear model of the objective function and the convergence of these methods is studie
25#
發(fā)表于 2025-3-25 21:25:15 | 只看該作者
26#
發(fā)表于 2025-3-26 02:47:20 | 只看該作者
Beyond the Oracle: Opportunities of Piecewise Differentiationoracle that evaluates at any given . the objective function value .(.) and a generalized gradient .?∈?.(.) in the sense of Clarke. We will argue here that, if there is a realistic possibility of computing a vector . that is guaranteed to be a generalized gradient, then one must know so much about th
27#
發(fā)表于 2025-3-26 05:01:34 | 只看該作者
Numerical Solution of Generalized Minimax Problemssts in the minimization of nonsmooth functions which are compositions of special smooth convex functions with maxima of smooth functions. The most important functions of this type are the sums of maxima of smooth functions. Section 11.2 is devoted to primal interior point methods which use solutions
28#
發(fā)表于 2025-3-26 11:19:57 | 只看該作者
29#
發(fā)表于 2025-3-26 15:12:14 | 只看該作者
New Multiobjective Proximal Bundle Method with Scaled Improvement Functioncase the improvement function possesses, for example the nice property that a descent direction for the improvement function improves all the objectives of the original problem. However, the numerical experiments have shown that the standard improvement function is rather sensitive for scaling. For
30#
發(fā)表于 2025-3-26 19:23:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 15:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高台县| 揭阳市| 航空| 渭南市| 神农架林区| 轮台县| 即墨市| 株洲市| 江陵县| 江城| 民县| 锦屏县| 阳谷县| 纳雍县| 龙泉市| 阿图什市| 蓬安县| 驻马店市| 醴陵市| 囊谦县| 宁津县| 永吉县| 出国| 保康县| 英德市| 天等县| 富顺县| 海城市| 江北区| 湖南省| 吉隆县| 舞钢市| 社会| 靖江市| 佛冈县| 梓潼县| 公主岭市| 同心县| 阳城县| 闽侯县| 鱼台县|