找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory; Tradition and Modern Wenpeng Zhang,Yoshio Tanigawa Conference proceedings 2006 Springer-Verlag US 2006 Congruences.Exponenti

[復制鏈接]
樓主: 凝固
21#
發(fā)表于 2025-3-25 05:21:57 | 只看該作者
22#
發(fā)表于 2025-3-25 11:31:22 | 只看該作者
23#
發(fā)表于 2025-3-25 15:31:32 | 只看該作者
Zhen Cui Fredholm theory of elliptic differential operators. The last Sect. 10.4 deals with a characterization of pairs of differential operators with constant coefficients which obey the dominance property between .2 and its weighted counterpart.
24#
發(fā)表于 2025-3-25 16:18:28 | 只看該作者
25#
發(fā)表于 2025-3-25 20:58:29 | 只看該作者
26#
發(fā)表于 2025-3-26 01:58:33 | 只看該作者
Conference proceedings 2006number theory is elaborated. The book emphasizes a few common features such as functional equations for various zeta-functions, modular forms, congruence conditions, exponential sums, and algorithmic aspects. .
27#
發(fā)表于 2025-3-26 05:26:23 | 只看該作者
28#
發(fā)表于 2025-3-26 09:38:25 | 只看該作者
On the Hilbert-Kamke and the Vinogradov Problems in Additive Number Theory, (mean values of) trigonometrical sums and find the exponent of convergence of the associated singular integrals. We shall also state the corresponding results on the multivariate version of these problems.
29#
發(fā)表于 2025-3-26 16:22:39 | 只看該作者
Some Aspects of the Modular Relation,ting the functional equation to the .-series (or vice versa) in §2, while §3 and §4 are devoted to elucidate the location of the partial fraction expansion of the coth (cot, respectively) in the modular relation framework.
30#
發(fā)表于 2025-3-26 17:57:43 | 只看該作者
Cubic Fields and Mordell Curves,P(.). It is also pointed out that .(.(.)) is essentially dependent on the polynomial .(.) rather than the cubic field ?(ξ) even though .[?] is completely described by the subset .(ξ) of the cubic field.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 10:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
尉犁县| 洪雅县| 磐石市| 泰顺县| 常德市| 枝江市| 兴隆县| 达孜县| 利津县| 沭阳县| 南平市| 花莲市| 达州市| 南宫市| 比如县| 嘉定区| 南华县| 永年县| 仁布县| 满洲里市| 大同市| 武隆县| 且末县| 石景山区| 凭祥市| 石林| 扎赉特旗| 定西市| 抚顺市| 大冶市| 陆河县| 理塘县| 隆子县| 贺兰县| 山西省| 贵南县| 布尔津县| 高青县| 甘南县| 威海市| 江门市|